精英家教网 > 高中数学 > 题目详情
在直角坐标系xOy中,已知圆M的方程为x2+y2-4xcosα-2ysinα+3cos2α=0(α为参数),直线l的参数方程为
x=tcosθ
y=1+tsinθ
(t
为参数)
(I)求圆M的圆心的轨迹C的参数方程,并说明它表示什么曲线;
(II)求直线l被轨迹C截得的最大弦长.
分析:(Ⅰ)通过配方即可得到圆心的参数方程,再消去参数即可得到其普通方程.
(Ⅱ)由于直线上的一点P(0,1)也是圆M的圆心的轨迹椭圆
x2
4
+y2=1
的短轴的上顶点,据参数方程再设此椭圆上的任意一点的坐标(2cosα,sinα),
根据两点间的距离公式即可得到弦长|PQ|是关于sinα的二次函数,利用其单调性即可求出最大值.
解答:解:(Ⅰ)∵圆M的方程为x2+y2-4xcosα-2ysinα+3cos2α=0(α为参数),
配方得(x-2cosα)2+(y-sinα)2=1,
∴圆M的圆心(x,y)的轨迹C的参数方程为
x=2cosα
y=sinα
(α为参数),
变为
x
2
=cosα
,y=sinα,
将上两式分别平方相加得
x2
4
+y2=1

∴圆心(x,y)的轨迹C为:焦点在x轴上,长半轴长是2,短半轴长是1的椭圆.
(Ⅱ)直线l的参数方程为
x=tcosθ
y=1+tsinθ
(t
为参数),
令t=0,则x=0,y=1,∴(0,1)在直线l上,并且是圆M的圆心的轨迹椭圆
x2
4
+y2=1
的短轴的上顶点,
设点P(2cosα,sinα)是直线l与椭圆相交的另一个交点,
则弦长|PQ|的平方|PQ|2=(2cosα-0)2+(sinα-1)2=-3sin2α-2sinα+5
=-3(sinα+
1
3
)2+
16
3

∵-1≤sinα≤1,∴当sinα=-
1
3
时,上式的最大值为
16
3

即弦长|PQ|的最大值为
4
3
3
点评:本题考查了曲线的参数方程化为普通方程及其参数的意义,正确利用二次函数的单调性求最值和理解参数得意义是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在直角坐标系xOy中,椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1,F2.F2也是抛物线C2:y2=4x的焦点,点M为C1与C2在第一象限的交点,且|MF2|=
5
3

(Ⅰ)求C1的方程;
(Ⅱ)平面上的点N满足
MN
=
MF1
+
MF2
,直线l∥MN,且与C1交于A,B两点,若
OA
OB
=0
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,已知点P(2cosx+1,2cos2x+2)和点Q(cosx,-1),其中x∈[0,π].若向量
OP
OQ
垂直,求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,在直角坐标系xOy中,射线OA在第一象限,且与x轴的正半轴成定角60°,动点P在射线OA上运动,动点Q在y轴的正半轴上运动,△POQ的面积为2
3

(1)求线段PQ中点M的轨迹C的方程;
(2)R1,R2是曲线C上的动点,R1,R2到y轴的距离之和为1,设u为R1,R2到x轴的距离之积.问:是否存在最大的常数m,使u≥m恒成立?若存在,求出这个m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率e=
2
2
,左右两个焦分别为F1,F2.过右焦点F2且与x轴垂直的直线与椭圆C相交M、N两点,且|MN|=2.
(1)求椭圆C的方程;
(2)设椭圆C的一个顶点为B(0,-b),是否存在直线l:y=x+m,使点B关于直线l 的对称点落在椭圆C上,若存在,求出直线l的方程,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案