精英家教网 > 高中数学 > 题目详情
已知集合A={x|-1≤x≤3},集合B={x|
1
x
<0},则A∪B=(  )
A、{x|-1<x<0}
B、{x|-1≤x<0}
C、{x|x<0}
D、{x|x≤3}
考点:并集及其运算
专题:集合
分析:利用并集的性质求解.
解答: 解:∵集合A={x|-1≤x≤3},集合B={x|
1
x
<0}={x|x<0},
∴A∪B={x|x≤3}.
故选:D.
点评:本题考查并集的求法,解题时要认真审题,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=xex在点(1,f(1))处的切线的斜率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=an-1(a是不为0的常数),那么数列{an}(  )
A、一定是等差数列
B、一定是等比数列
C、或者是等差数列或者是等比数列
D、既不是等差数列也不是等比数列

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
x2+x,x<0
-x2,x≥0
,则f(f(-2))=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)化简
a-4b2
3ab2
(a>0,b>0)(结果写成分数指数幂形式);
(2)计算log2
7
48
+log212-
1
2
log242的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

sin(-660°)=(  )
A、
1
2
B、-
1
2
C、
3
2
D、-
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,直三棱柱ABC-A 11C1中,AC=BC=1,∠ACB=90°,点D为AB的中点.
(1)求证:BC1∥面A1DC;
(2)若AA1=
2
2
,求二面角A1-CD-B的平面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

若一个三位数的百位,十位和个位上的数依次成等差数列,则称这样的数为三位等差数,按照上述定义,三位等差数共有
 
个.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知过点F1(-1,0)且斜率为1的直线l1与直线l2:3x+3y+5=0交于点P.
(Ⅰ)求以F1、F2(1,0)为焦点且过点P的椭圆C的方程.
(Ⅱ)设点Q是椭圆C上除长轴两端点外的任意一点,试问在x轴上是否存在两定点A、B使得直线QA、QB的斜率之积为定值?若存在,请求出定值,并求出所有满足条件的定点A、B的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案