【题目】已知动点
到定点
的距离之和为4.
(1)求动点
的轨迹方程![]()
(2)若轨迹
与直线
交于
两点,且
求
的值.
(3)若点
与点
在轨迹
上,且点
在第一象限,点
在第二象限,点
与点
关于原点对称,求证:当
时,三角形
的面积为定值.
【答案】(1)
;(2)
;(3)定值
,见解析
【解析】
(1)求得椭圆的
,即可求动点
的轨迹方程![]()
(2)将直线
代入椭圆方程
,可得
的方程,运用韦达定理和判别式大于0,由弦长公式,解方程即可得到所求值;
(3)求出直线AB的方程,运用点到直线的距离公式求得P到直线AB的距离,弦长AB,运用三角形的面积公式可得
,再由A,P满足椭圆方程,结合条件
,计算即可得到三角形
的面积为定值.
(1)动点Q到两定点
、
的距离和为4,满足椭圆的定义,且![]()
![]()
,
动点
的轨迹方程
:![]()
(2)将直线
代入椭圆方程
,可得
,
,解得
,
设![]()
![]()
则![]()
![]()
即有
,
解得
,满足![]()
(3)证明:直线AB的方程为
,即为
,
可得
到直线AB的距离为
,
,
则
═
,
由
,得
因为
![]()
可得![]()
![]()
则![]()
由
,可得![]()
![]()
即有![]()
故当
时,三角形
的面积为定值![]()
科目:高中数学 来源: 题型:
【题目】目前有声书正受着越来越多人的喜爱.某有声书公司为了解用户使用情况,随机选取了
名用户,统计出年龄分布和用户付费金额(金额为整数)情况如下图.
![]()
有声书公司将付费高于
元的用户定义为“爱付费用户”,将年龄在
岁及以下的用户定义为“年轻用户”.已知抽取的样本中有
的“年轻用户”是“爱付费用户”.
(1)完成下面的
列联表,并据此资料,能否有
的把握认为用户“爱付费”与其为“年轻用户”有关?
爱付费用户 | 不爱付费用户 | 合计 | |
年轻用户 | |||
非年轻用户 | |||
合计 |
(2)若公司采用分层抽样方法从“爱付费用户”中随机选取
人,再从这
人中随机抽取
人进行访谈,求抽取的
人恰好都是“年轻用户”的概率.
|
|
|
|
|
|
|
|
|
|
|
|
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,长方体ABCD﹣A1B1C1D1中,AB=BC=4,BB1=2
,点E、F、M分别为C1D1,A1D1,B1C1的中点,过点M的平面α与平面DEF平行,且与长方体的面相交,交线围成一个几何图形.
![]()
(1)在图1中,画出这个几何图形,并求这个几何图形的面积(不必说明画法与理由)
(2)在图2中,求证:D1B⊥平面DEF.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆
的右顶点为
,上顶点为
.已知椭圆的离心率为
,
.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设直线
:
与椭圆交于
,
两点,且点
在第二象限.
与
延长线交于点
,若
的面积是
面积的3倍,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
是由非负整数组成的无穷数列,对每一个正整数
,该数列前
项的最大值记为
,第
项之后各项
的最小值记为
,记
.
(1)若数列
的通项公式为
,求数列
的通项公式;
(2)证明:“数列
单调递增”是“
”的充要条件;
(3)若
对任意
恒成立,证明:数列
的通项公式为
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】谈祥柏先生是我国著名的数学科普作家,他写的《数学百草园》、《好玩的数学》、《故事中的数学》等书,题材广泛、妙趣横生,深受广大读者喜爱.下面我们一起来看《好玩的数学》中谈老的一篇文章《五分钟内挑出埃及分数》:文章首先告诉我们,古埃及人喜欢使用分子为1的分数(称为埃及分数).如用两个埃及分数
与
的和表示
等.从
这100个埃及分数中挑出不同的3个,使得它们的和为1,这三个分数是________.(按照从大到小的顺序排列)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】关于圆周率
,数学发展史上出现过许多有创意的求法,如著名的普丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计
的值:先请120名同学每人随机写下一个x,y都小于1的正实数对
,再统计其中x,y能与1构成钝角三角形三边的数对
的个数m,最后根据统计个数m估计
的值.如果统计结果是
,那么可以估计
的值为( )
A.
B.
C.
D.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com