精英家教网 > 高中数学 > 题目详情
已知函数:(1)y=x+
4
x
(x>0),(2)y=cosx+
4
cosx
0<x<
π
2
),(3)y=
x2+13
x2+9
,(4)y=
1
2
(1+cotx)(1+4tanx)
0<x<
π
2
),其中以4为最小值的函数的序号为
(1)
(1)
分析:由基本不等式,我们可以分别求出题目中四个函数的值域,然后逐一比照后,即可得到答案.
解答:解:(1)中y=x+
4
x
(x>0)
则y∈[4,+∞),
y=x+
4
x
(x>0)的最小值是4,即(1)符合要求;
(2)中y=cosx+
4
cosx
0<x<
π
2
),
则y∈(5,+∞),即(2)不符合要求;
(3)中y=
x2+13
x2+9
=
x2+9
+
4
x2+9

由于
x2+9
≥3
,当
x2+9
=3
时,
y=
x2+13
x2+9
取最小值是4
1
3
,即(3)不符合要求;
(4)中y=
1
2
(1+cotx)(1+4tanx)
=
5
2
+
1
2
(cotx+4tanx)
0<x<
π
2

∴cotx+4tanx≥4
∴y∈[4
1
2
,+∞),
y=
1
2
(1+cotx)(1+4tanx)
0<x<
π
2
)的最小值是4
1
2
,即(4)不符合要求;
故答案为:(1)
点评:本题考查的知识点是函数的最值及其几何意义,基本不等式,其中结合基本不等式,求出各个函数的值域,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数a>1,y=
aa2-1
(ax-a-x)

(1)判断函数的奇偶性和单调性;
(2)当x∈(-1,1)时,有f(1-m)+f(1-m2)<0,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:苏教版江苏省扬州市2007-2008学年度五校联考高三数学试题 题型:044

已知函数(m∈R)

(1)若y=lo[8-f(x)]在[1,+∞)上是单调减函数,求实数m的取值范围;

(2)设g(x)=f(x)+lnx,当m≥-2时,求g(x)在上的最大值.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年湖北省八校高三第二次联考文科数学试卷(解析版) 题型:解答题

已知函数f(x)=;

(1)求y=f(x)在点P(0,1)处的切线方程;

(2)设g(x)=f(x)+x-1仅有一个零点,求实数m的值;

(3)试探究函数f(x)是否存在单调递减区间?若有,设其单调区间为[t,s],试求s-t的取值范围?若没有,请说明理由。

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数:(1)y=x+
4
x
(x>0),(2)y=cosx+
4
cosx
0<x<
π
2
),(3)y=
x2+13
x2+9
,(4)y=
1
2
(1+cotx)(1+4tanx)
0<x<
π
2
),其中以4为最小值的函数的序号为______.

查看答案和解析>>

同步练习册答案