精英家教网 > 高中数学 > 题目详情
如图,在三棱锥中,,且平面,过作截面分别交,且二面角的大小为,则截面面积的最小值为      .

试题分析:过P做PG⊥EF,垂足为G,连接CG则由三垂线定理可得EF⊥CG,∴∠PGC即为二面角角P-EF-C的平面角,

∴∠PGC=60°,PC=1,∴在三角形PEF斜边EF边上的高为PG=,CG=,设CE=a,CF=b,则EF=,在三角形CEF中,ab=×,又,∴ab≥,∴,∴三角形PEF的面积为,故截面面积的最小值为
点评:解决此类问题的关键是利用三垂线定理作出二面角,然后利用基本不等式求出最值即可
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

是两条不同的直线,是两个不同的平面,下列命题中正确的是(    )
A.若,,,则
B.若,,,则
C.若,,,则
D.若,,,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,若是长方体被平面截去几何体后得到的几何体,其中E为线段上异于的点,F为线段上异于的点,且,则下列结论中不正确的是(  )
A.B.四边形是矩形
C.是棱台D.是棱柱

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在空间四边形ABCD中,在AB、BC、DC、DA上分别取E、F、G、H四点,如果GH、EF交于一点P,则                                    (   )
A.P一定在直线BD上         
B.P一定在直线AC上
C.P在直线AC或BD上      
D.P既不在直线BD上,也不在AC上

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱(侧棱垂直底面)中,M、N分别是BC、AC1中点,AA1=2,AB=,AC=AM=1.

(1)证明:MN∥平面A1ABB1
(2)求几何体C—MNA的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,在四面体中,两两互相垂直,且

(1)求证:平面平面
(2)求二面角的大小;
(3)若直线与平面所成的角为,求线段的长度.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

正方体中,分别是棱的中点,则异面直线所成的角等于__________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P—ABCD中,底面ABCD是边长为的正方形E, F分别为PC,BD的中点,侧面PAD⊥底面ABCD,且PA=PD=AD.

(Ⅰ)求证:EF//平面PAD;
(Ⅱ)求三棱锥C—PBD的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知长方体ABCD—A1B1ClD1内接于球O,底面ABCD是边长为2的正方形,E为AA1的中点,OA⊥平面BDE,则球O的表面积为
A.8B.16:C.14D.18

查看答案和解析>>

同步练习册答案