分析 (1)直线与椭圆方程联立,韦达定理得A、B两点坐标的关系,即可证明结论;
(2)利用$\overrightarrow{OM}$=μ$\overrightarrow{OA}$+λ$\overrightarrow{OB}$,当μ2+λ2=1且M在椭圆上,得出x1x2+a2y1y2=x1x2+a2(x1+c)(x2+c)=0,即可得出结论.
解答 (1)证明:设直线AB的方程为y=x+c,代入$\frac{{x}^{2}}{{a}^{2}}$+y2=1,
化简得(a2+1)x2+2a2cx+a2c2-a2=0.
令A(x1,y1),B(x2,y2),
则x1+x2=-$\frac{2{a}^{2}c}{{a}^{2}+1}$
又y1=x1+c,y2=x2+c,∴y1+y2=-$\frac{2c}{{a}^{2}+1}$
∵$\overrightarrow{OA}$+$\overrightarrow{OB}$=(x1+x2,y1+y2),
∴$\overrightarrow{OA}$+$\overrightarrow{OB}$与向量$\overrightarrow{m}$=(a2,-1)共线;
(2)解:设M(x,y),
由已知得(x,y)=λ(x1,y1)+μ(x2,y2),
∴x=λx1+μx2,y=λy1+μy2,
∵M(x,y)在椭圆上,
∴(λx1+μx2)2+a2(λy1+μy2)2=a2.
即λ2(x12+a2y12)+μ2(x22+a2y22)+2λμ(x1x2+a2y1y2)=a2.①
又x12+a2y12=a2,x22+a2y22=a2,μ2+λ2=1
∴x1x2+a2y1y2=x1x2+a2(x1+c)(x2+c)=0.
∴(a2+1)x1x2+ca2(x1+x2)+a2(a2-1)=0
代入解得a=$\sqrt{3}$,
∴椭圆方程为$\frac{{x}^{2}}{3}+{y}^{2}$=1.
点评 考查向量共线为圆锥曲线提供已知条件;处理直线与圆锥曲线位置关系常用的方法是直线与圆锥曲线方程联立用韦达定理.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 0 | C. | -1 | D. | -2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 有最小值-5 | B. | 有最大值-5 | C. | 有最小值-1 | D. | 有最大值-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若$λ\overrightarrow{a}+μ\overrightarrow{b}$=$\overrightarrow{0}$,则λ=μ=0 | B. | 若$\overrightarrow{a}•\overrightarrow{b}$=0,则$\overrightarrow{a}$∥$\overrightarrow{b}$ | ||
| C. | 若$\overrightarrow{a}$∥$\overrightarrow{b}$,则$\overrightarrow{a}$在$\overrightarrow{b}$上的投影为|$\overrightarrow{a}$| | D. | 若$\overrightarrow{a}⊥\overrightarrow{b}$,则$\overrightarrow{a}$•$\overrightarrow{b}$=($\overrightarrow{a}$$•\overrightarrow{b}$)2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {1,2} | B. | {1,2,0,-1} | C. | (-1,2] | D. | {1.5,0} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①④ | B. | ②③ | C. | ①②③ | D. | ②③④ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com