精英家教网 > 高中数学 > 题目详情
6.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+y2=1(a>1),过右焦点且斜率为1的直线交椭圆于A、B两点.
(1)证明:$\overrightarrow{OA}$+$\overrightarrow{OB}$与向量$\overrightarrow{m}$=(a2,-1)共线;
(2)设$\overrightarrow{OM}$=μ$\overrightarrow{OA}$+λ$\overrightarrow{OB}$,当μ22=1且M在椭圆上时,求椭圆方程.

分析 (1)直线与椭圆方程联立,韦达定理得A、B两点坐标的关系,即可证明结论;
(2)利用$\overrightarrow{OM}$=μ$\overrightarrow{OA}$+λ$\overrightarrow{OB}$,当μ22=1且M在椭圆上,得出x1x2+a2y1y2=x1x2+a2(x1+c)(x2+c)=0,即可得出结论.

解答 (1)证明:设直线AB的方程为y=x+c,代入$\frac{{x}^{2}}{{a}^{2}}$+y2=1,
化简得(a2+1)x2+2a2cx+a2c2-a2=0.
令A(x1,y1),B(x2,y2),
则x1+x2=-$\frac{2{a}^{2}c}{{a}^{2}+1}$
又y1=x1+c,y2=x2+c,∴y1+y2=-$\frac{2c}{{a}^{2}+1}$
∵$\overrightarrow{OA}$+$\overrightarrow{OB}$=(x1+x2,y1+y2),
∴$\overrightarrow{OA}$+$\overrightarrow{OB}$与向量$\overrightarrow{m}$=(a2,-1)共线;
(2)解:设M(x,y),
由已知得(x,y)=λ(x1,y1)+μ(x2,y2),
∴x=λx1+μx2,y=λy1+μy2
∵M(x,y)在椭圆上,
∴(λx1+μx22+a2(λy1+μy22=a2
即λ2(x12+a2y12)+μ2(x22+a2y22)+2λμ(x1x2+a2y1y2)=a2.①
又x12+a2y12=a2,x22+a2y22=a2,μ22=1
∴x1x2+a2y1y2=x1x2+a2(x1+c)(x2+c)=0.
∴(a2+1)x1x2+ca2(x1+x2)+a2(a2-1)=0
代入解得a=$\sqrt{3}$,
∴椭圆方程为$\frac{{x}^{2}}{3}+{y}^{2}$=1.

点评 考查向量共线为圆锥曲线提供已知条件;处理直线与圆锥曲线位置关系常用的方法是直线与圆锥曲线方程联立用韦达定理.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知向量$\overrightarrow{m}$=(λ,1),$\overrightarrow{n}$=(λ+1,2),若($\overrightarrow{m}$+$\overrightarrow{n}$)⊥($\overrightarrow{m}$-$\overrightarrow{n}$),则λ=(  )
A.1B.0C.-1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.(x+3)(1-$\frac{2}{\sqrt{x}}$)5的展开式中常数项为43.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若f(x)和g(x)都是奇函数,且F(x)=af(x)+bg(x)+2在(0,+∞)上有最大值5,则F(x)在(-∞,0)上(  )
A.有最小值-5B.有最大值-5C.有最小值-1D.有最大值-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列命题中正确的是(  )
A.若$λ\overrightarrow{a}+μ\overrightarrow{b}$=$\overrightarrow{0}$,则λ=μ=0B.若$\overrightarrow{a}•\overrightarrow{b}$=0,则$\overrightarrow{a}$∥$\overrightarrow{b}$
C.若$\overrightarrow{a}$∥$\overrightarrow{b}$,则$\overrightarrow{a}$在$\overrightarrow{b}$上的投影为|$\overrightarrow{a}$|D.若$\overrightarrow{a}⊥\overrightarrow{b}$,则$\overrightarrow{a}$•$\overrightarrow{b}$=($\overrightarrow{a}$$•\overrightarrow{b}$)2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.从1到9这9个数字中取出不同的5个数字进行排列,问:奇数的位置上是奇数的排法有多少种?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知集合H={1,2,3,4},集合K={1,1.5,2,0,-1,-2},则H∩K为(  )
A.{1,2}B.{1,2,0,-1}C.(-1,2]D.{1.5,0}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,已知四边形ABCD和ABEG均为平行四边形,点E在平面ABCD内的射影恰好为点A,以BD为直径的圆经过点A,C,AG的中点为F,CD的中点为P,且AD=AB=AE=2
(Ⅰ)求证:平面EFP⊥平面BCE
(Ⅱ)求几何体ADC-BCE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设m,n表示两条不同的直线,α,β,γ表示三个不同的平面,给出下列四个命题:
①若α⊥γ,β⊥γ,则α∥β;
②若α∥β,m?α,则m∥β;
③若m⊥α,n∥α,则m⊥n;
④若m⊥n,m⊥α,n∥β,则α⊥β.
其中正确命题的序号是(  )
A.①④B.②③C.①②③D.②③④

查看答案和解析>>

同步练习册答案