精英家教网 > 高中数学 > 题目详情
已知,点A(s,f(s)), B(t,f(t))
(I) 若,求函数的单调递增区间;
(II)若函数的导函数满足:当|x|≤1时,有||≤恒成立,求函数的解析表达式;
(III)若0<a<b, 函数处取得极值,且,证明:不可能垂直.
(I) f(x)的增区间是(-∞,)和[1,+ ∞]. …………………………3分
(II) f(x)=x3x. ……………………9分
(III) 证明见解析
(I) f(x)=x3-2x2+x, (x)=3x2-4x+1,
因为f(x)单调递增,
所以(x)≥0,
即 3x2-4x+1≥0,
解得,x≥1, 或x≤,……………………………2分
故f(x)的增区间是(-∞,)和[1,+ ∞]. …………………………3分
(II) (x)=3x2-2(a+b)x+ab.
当x∈[-1,1]时,恒有|(x)|≤.………………………4分
故有(1)≤
(-1)≤
(0)≤,………………………5
    ………6
①+②,得
≤ab≤,……………………………8分
又由③,得
ab=
将上式代回①和②,得
a+b=0,
故f(x)=x3x. ……………………9分
(III) 假设,
= =" st+f(s)f(t)=0," ……………10分
(s-a)(s-b)(t-a)(t-b)=-1,
[st-(s+t)a+a2][st-(s+t)b+b2]="-1," ……………………………………11分
由s,t为(x)=0的两根可得,
s+t=(a+b), st=, (0<a<b),
从而有ab(a-b)2="9." ……………………………………12分
这样(a+b)2=(a-b)2+4ab
= +4ab≥2=12,
即 a+b≥2,
这样与a+b<2矛盾. ……………………13分
不可能垂直.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数处取得极值.
(1)求实数a的值,并判断上的单调性;
(2)若数列满足
(3)在(2)的条件下,

求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知:函数是常数)是奇函数,且满足
(Ⅰ)求的值;
(Ⅱ)试判断函数在区间上的单调性并说明理由;
(Ⅲ)试求函数在区间上的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,则等于( )
A.B.C.0D.以上都不是

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知三次函数在y轴上的截距是2,且在上单调递增,在(-1,2)上单调递减.

20070328

 
   (Ⅰ)求函数f (x)的解析式;

   (Ⅱ)若函数,求的单调区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数的图象经过A(0,1),且在该点处的切线与直线平行.
(1)求b与c的值;
(2)求上的最大值与最小值分别为Ma),Na),求Fa)=Ma)-Na)的表达式.
(3)在)(2)的条件下,当a的区间上变化时,证明:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

( 14分)已知函数,其中为无理数.(1)若,求证:;(2)若在其定义域内是单调函数,求的取值范围;(3)对于区间(1,2)中的任意常数,是否存在使成立?
若存在,求出符合条件的一个;否则,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知,求

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数是偶函数,当时.(a为实数).
(1)若处有极值,求a的值。(6分)
(2)若上是减函数,求a的取值范围。(8分)

查看答案和解析>>

同步练习册答案