精英家教网 > 高中数学 > 题目详情

已知P是圆x2+y2=1上的动点,则P点到直线数学公式的距离的最小值为


  1. A.
    1
  2. B.
    数学公式
  3. C.
    2
  4. D.
    数学公式
A
分析:先利用点到直线的距离公式求得圆心到直线的距离,再用此距离减去半径,即得所求.
解答:由于圆心O(0,0)到直线的距离d==2,且圆的半径等于1,
故圆上的点P到直线的最小距离为 d-r=2-1=1,
故选A.
点评:本题主要考查直线和圆的位置关系,点到直线的距离公式的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知P是圆x2+y2=9,上任意一点,由P点向x轴做垂线段PQ,垂足为Q,点M在PQ上,且
PM
=2
MQ
,点M的轨迹为曲线C.
(Ⅰ)求曲线C的轨迹方程;
(Ⅱ)过点(0,-2)的直线l与曲线C相交于A、B两点,试问在直线y=-
1
8
上是否存在点N,使得四边形OANB为矩形,若存在求出N点坐标,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•淄博一模)已知P是圆x2+y2=1上的动点,则P点到直线l:x+y-2
2
=0
的距离的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A是圆x2+y2=4上任一点,AB垂直于x轴,交x轴于点B.以A为圆心、AB为半径作圆交已知圆于C、D,连接CD交AB于点P,求点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:2010年辽宁省沈阳市高考数学三模试卷(文科)(解析版) 题型:解答题

已知P是圆x2+y2=9,上任意一点,由P点向x轴做垂线段PQ,垂足为Q,点M在PQ上,且,点M的轨迹为曲线C.
(Ⅰ)求曲线C的轨迹方程;
(Ⅱ)过点(0,-2)的直线l与曲线C相交于A、B两点,试问在直线上是否存在点N,使得四边形OANB为矩形,若存在求出N点坐标,若不存在说明理由.

查看答案和解析>>

同步练习册答案