精英家教网 > 高中数学 > 题目详情
已知双曲线的左右焦点分别为F1、F2,点P在双曲线的右支上,且|PF1|=4|PF2|,则此双曲线的离心率e的取值范围为
 
分析:由双曲线的定义可得|PF1|-|PF2|=3|PF2|=2a,再根据点P在双曲线的右支上,可得|PF2|≥c-a,从而求得此双曲线的离心率e的取值范围.
解答:解:∵|PF1|=4|PF2|,
∴由双曲线的定义可得|PF1|-|PF2|=3|PF2|=2a,
∴|PF2|=
2a
3

∵点P在双曲线的右支上,
∴|PF2|≥c-a,
2a
3
≥c-a,
e=
c
a
5
3

∵e>1,
1<e≤
5
3

∴双曲线的离心率e的取值范围为(1,
5
3
].
故答案为:(1,
5
3
].
点评:本题考查双曲线的定义和标准方程,以及双曲线的简单性质的应用,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线的左右焦点是F1,F2,设P是双曲线右支上一点,
F1F2
F1P
上的投影的大小恰好为|
F1P
|
且它们的夹角为
π
6
,则双曲线的离心率e为
 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年天津市高三第四次月考理科数学试卷(解析版) 题型:填空题

已知双曲线的左右焦点为,P为双曲线右支上

的任意一点,若的最小值为8a,则双曲线的离心率的取值范围是        

 

查看答案和解析>>

科目:高中数学 来源:2013届湖北省四校高二下学期期中文科数学试卷(解析版) 题型:选择题

已知双曲线的左右焦点分别为为左支上一点,若的最小值为,则双曲线离心率的取值范围为(     )

A、                      B、               C、            D、

 

查看答案和解析>>

科目:高中数学 来源:2012届福建省三明市高三第一学期测试理科数学试卷 题型:填空题

已知双曲线的左右焦点分别是点是双曲线右支上一点,且,则三角形的面积等于     

 

查看答案和解析>>

同步练习册答案