精英家教网 > 高中数学 > 题目详情
正方体ABCD-A1B1C1D1中,点F为A1D的中点,
(Ⅰ)求证:A1B∥平面AFC;
(Ⅱ)求证:平面A1B1CD⊥平面AFC。
证明:(Ⅰ)连接BD交AC于点O,连接FO,则点O是BD的中点,
∵点F为A1D的中点,∴A1B∥FO,
又A1B平面AFC,FO平面AFC,
∴A1B∥平面AFC。 
(Ⅱ)在正方体ABCD-A1B1C1D1中,连接B1D,则AC⊥BD,AC⊥BB1
∴AC⊥平面B1BD,∴AC⊥B1D,
同理可得AD1⊥B1D,
直线AF即直线AD1,故AF⊥B1D,
又AC∩AF=A,
∴B1D⊥平面AFC,
而B1D平面A1B1CD,
∴平面A1B1CD⊥平面AFC。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

正方体ABCD-A1B1C1D1的各顶点均在半径为1的球面上,则四面体A1-ABC的体积等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是从上下底面处在水平状态下的棱长为a的正方体ABCD-A1B1C1D1中分离出来的:
(1)试判断A1是否在平面B1CD内;(回答是与否)
(2)求异面直线B1D1与C1D所成的角;
(3)如果用图示中这样一个装置来盛水,那么最多可以盛多少体积的水.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知边长为6的正方体ABCD-A1B1C1D1,E,F为AD、CD上靠近D的三等分点,H为BB1上靠近B的三等分点,G是EF的中点.
(1)求A1H与平面EFH所成角的正弦值;
(2)设点P在线段GH上,
GP
GH
=λ,试确定λ的值,使得二面角P-C1B1-A1的余弦值为
10
10

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在棱长为2cm的正方体ABCD-A1B1C1D1中,A1B1的中点是P,过点A1作出与截面PBC1平行的截面,简单证明截面形状,并求该截面的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1中,M是棱AB的中点,过A1,M,C三点的平面与CD所成角正弦值(  )

查看答案和解析>>

同步练习册答案