精英家教网 > 高中数学 > 题目详情
已知f(x)在x=x0处的导数为4,则
lim
△x→0
f(x0+2△x)-f(x0)
△x
=(  )
A、4B、8C、2D、-4
分析:利用导数的定义即可得出.
解答:解:∵f′(x0)=4,∴
lim
△x→0
f(x0+2△x)-f(x0)
△x
=2•
lim
△x→0
f(x0+2△x)-f(x0)
2x
=2f′(x0)=8.
故选:B.
点评:本题考查了导数的定义,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f 1(x)=|3x-1|,f2(x)=|a•3x-9|(a>0),x∈R,且f(x)=
f1(x),f1(x)≤f2(x)
f2(x),f1(x)>f2(x)

(1)当a=1时,求f(x)的解析式;
(2)在(1)的条件下,若方程f(x)-m=0有4个不等的实根,求实数m的范围;
(3)当2≤a<9时,设f(x)=f2(x)所对应的自变量取值区间的长度为l(闭区间[m,n]的长度定义为n-m),试求l的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)的定义域为{x∈R|x≠0},且f(x)是奇函数,当x>0时f(x)=-x2+bx+c,若f(1)=f(3),f(2)=2.
(1)求b,c的值;
(2)求f(x)在x<0时的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)的定义域为{x∈R|x≠0},且f(x)是奇函数,当x>0时,f(x)=-x2+bx+c,若f(1)=f(3),f(2)=2
(1)求b,c的值;
(2)求f(x)在x<0时的表达式;
(3)若关于x的方程f(x)=ax,(a∈R)有解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)讨论函数f(x)在区间(-∞,0)上的单调性;
(Ⅲ)若数学公式,设g(x)是函数f(x)在区间[0,+∞)上的导函数,问是否存在实数a,满足a>1并且使g(x)在区间数学公式上的值域为数学公式,若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2011年高三数学第一轮基础知识训练(20)(解析版) 题型:解答题

已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)讨论函数f(x)在区间(-∞,0)上的单调性;
(Ⅲ)若,设g(x)是函数f(x)在区间[0,+∞)上的导函数,问是否存在实数a,满足a>1并且使g(x)在区间上的值域为,若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案