精英家教网 > 高中数学 > 题目详情
精英家教网如图,P1(x1,y1)、P2(x2,y2)、…、Pn(xn,yn)(0<y1<y2<…<yn)是曲线C:y2=3x(y≥0)上的n个点,点Ai(ai,0)(i=1,2,3,…,n)在x轴的正半轴上,且△Ai-1AiPi是正三角形(A0是坐标原点).
(1)写出a1,a2,a3
(2)求出点An(an,0)(n∈N*)的横坐标an关于n的表达式;
(3)设bn=
1
an+1
+
1
an+2
+
1
an+3
+…+
1
a2n
,若对任意的正整数n,当m∈[-1,1]时,不等式t2-2mt+
1
6
bn
恒成立,求实数t的取值范围.
分析:(1)由题意可知直线A0P1为y=
3
x,然后与y2=3x联立可得到P1的坐标,再由△A0A1P1是正三角形可得到A1的坐标得到a1的值,同理可得到a2、a3
(2)先根据题意可得到关系xn=
an-1+an
2
yn=
3
an-an-1
2
,然后根据yn2=3xn得(an-an-12=2(an-1+an),从而可猜想数列通项公式an=n(n+1),再由数学归纳法证明即可.
(3)先根据(2)中an的表达式可得到bn的关系式bn=
1
(2n+
1
n
)+3
,再由函数的单调性可判断当n=1是bn的最大值,故为使得不等式t2-2mt+
1
6
bn
恒成立只要t2-2mt+
1
6
(bn)max=
1
6
即可,即只要t2-2mt>0对于?m∈[-1,1]恒成立即可,再由二次函数的性质即可得到t的范围.
解答:解(1)a1=2,a2=6,a3=12;
(2)依题意,得xn=
an-1+an
2
yn=
3
an-an-1
2
,由此及yn2=3xn(
3
an-an-1
2
)2=
3
2
(an-1+an)
,即(an-an-12=2(an-1+an).
由(1)可猜想:an=n(n+1)n∈N*
下面用数学归纳法予以证明:
(1)当n=1时,命题显然成立;
(2)假定当n=k时命题成立,即有an=k(k+1),则当n=k+1时,由归纳假设及(ak+1-ak2=2(ak+ak+1)得[ak+1-k(k+1)]2=2[k(k+1)+ak+1],即(ak+12-2(k2+k+1)ak+1+[k(k-1)]•[(k+1)(k+2)]=0,
解之得ak+1=(k+1)(k+2)(ak+1=k(k-1)<ak不合题意,舍去),
即当n=k+1时,命题成立.
由(1)、(2)知:命题成立.
(3)bn=
1
an+1
+
1
an+2
+
1
an+3
++
1
a2n
=
1
(n+1)(n+2)
+
1
(n+2)(n+3)
++
1
2n(2n+1)
=
1
n+1
-
1
2n+1
=
n
2n2+3n+1
=
1
(2n+
1
n
)+3

f(x)=2x+
1
x
(x≥1),则f′(x)=2-
1
x2
≥2-1>0
,所以f(x)在[1,+∞)上是增函数,
故当x=1时,f(x)取得最小值3,即当n=1时,(bn)max=
1
6
t2-2mt+
1
6
bn
((?n∈N,?m∈[-1,1])?t2-2mt+
1
6
>(bn)max=
1
6
,即t2-2mt>0(?m∈[-1,1])?
t2-2t>0 
t2+2t>0 •

解之得,实数t的取值范围为(-∞,-2)∪(2,+∞).
点评:本题主要考查求数列通项公式、数列的单调性问题以及二次函数的恒成立问题,考查综合运用能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,P1(x1,y1)、P2(x2,y2)、…、Pn(xn,yn)(0<y1<y2<…<yn)是曲线C:y2=3x(y≥0)上的n个点,点Ai(ai,0)(i=1,2,3,…,n)在x轴的正半轴上,且△Ai-1AiPi是正三角形(A0是坐标原点).
(1)写出a1,a2,a3
(2)求出点An(an,0)(n∈N*)的横坐标an关于n的表达式;并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,P1(x1,y1),P2(x2,y2),…,Pn(xn,yn)(0<y1<y2<…<yn)是曲线C:y2=3x(y≥0)上的n个点,点Ai(ai,0)(i=1,2,3,…,n)在x轴的正半轴上,且△Ai-1AiPi是正三角形(A0是坐标原点).则a1=
 
;猜想an关于n的表达式为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,P1(x1,y1)、P2(x2,y2)、…、Pn(xn,yn)(0<y1<y2<…<yn) 是曲线C:y2=3x(y≥0)上的n个点,点Ai(ai,0)(i=1,2,3,…n)在x轴的正半轴上,且△Ai-1AiPi是正三角形(A0是坐标原点).
(1)求a1、a2、a3的值;
(2)求出点An(an,0)(n∈N+)的横坐标an和点An-1(an-1,0)(n>0,n∈N+)横坐标an-1的关系式;
(3)根据(1)的结论猜想an关于n的表达式,并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•闸北区二模)如图,P1(x1,y1),P2(x2,y2),…,Pn(xn,yn),…是曲线C:y2=
1
2
x(y≥0)
上的点,A1(a1,0),A2(a2,0),…,An(an,0),…是x轴正半轴上的点,且△A0A1P1,△A1A2P2,…,△An-1AnPn,…均为斜边在x轴上的等腰直角三角形(A0为坐标原点).
(1)写出an-1、an和xn之间的等量关系,以及an-1、an和yn之间的等量关系;
(2)猜测并证明数列{an}的通项公式;
(3)设bn=
1
an+1
+
1
an+2
+
1
an+3
+…+
1
a2n
,集合B={b1,b2,b3,…,bn,…},A={x|x2-2ax+a2-1<0,x∈R},若A∩B=∅,求实常数a的取值范围.

查看答案和解析>>

同步练习册答案