精英家教网 > 高中数学 > 题目详情
精英家教网如图,P1(x1,y1),P2(x2,y2),…,Pn(xn,yn)(0<y1<y2<…<yn)是曲线C:y2=3x(y≥0)上的n个点,点Ai(ai,0)(i=1,2,3,…,n)在x轴的正半轴上,且△Ai-1AiPi是正三角形(A0是坐标原点).则a1=
 
;猜想an关于n的表达式为
 
分析:由题意可知直线A0P1为y=
3
x,然后与y2=3x联立可得到P1的坐标,再由△A0A1P1是正三角形可得到A1的坐标得到a1的值,先根据题意可得到关系,然后根据yn2=3xn得(an-an-12=2(an-1+an),从而可猜想数列通项公式an=n(n+1).
解答:解:y=
3
x  ①
y2=3x    ②
P1(1,
3
)

∴a1=2,
依题意,得 xn=
an-1+an
2
yn=
3
an-an-1
2

由此及yn2=3xn(
3
an-an-1
2
)2=
3
2
(an-1+an)

即(an-an-12=2(an-1+an).
由(1)可猜想:an=n(n+1)n∈N*
故答案为:2;an=n(n+1)(n∈N*
点评:本题考查数列与解析几何的综合题目,解题过程中,用到方程的求解,注意题目中的运算比较繁琐,不要在这种环节出错.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,P1(x1,y1)、P2(x2,y2)、…、Pn(xn,yn)(0<y1<y2<…<yn)是曲线C:y2=3x(y≥0)上的n个点,点Ai(ai,0)(i=1,2,3,…,n)在x轴的正半轴上,且△Ai-1AiPi是正三角形(A0是坐标原点).
(1)写出a1,a2,a3
(2)求出点An(an,0)(n∈N*)的横坐标an关于n的表达式;并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,P1(x1,y1)、P2(x2,y2)、…、Pn(xn,yn)(0<y1<y2<…<yn)是曲线C:y2=3x(y≥0)上的n个点,点Ai(ai,0)(i=1,2,3,…,n)在x轴的正半轴上,且△Ai-1AiPi是正三角形(A0是坐标原点).
(1)写出a1,a2,a3
(2)求出点An(an,0)(n∈N*)的横坐标an关于n的表达式;
(3)设bn=
1
an+1
+
1
an+2
+
1
an+3
+…+
1
a2n
,若对任意的正整数n,当m∈[-1,1]时,不等式t2-2mt+
1
6
bn
恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,P1(x1,y1)、P2(x2,y2)、…、Pn(xn,yn)(0<y1<y2<…<yn) 是曲线C:y2=3x(y≥0)上的n个点,点Ai(ai,0)(i=1,2,3,…n)在x轴的正半轴上,且△Ai-1AiPi是正三角形(A0是坐标原点).
(1)求a1、a2、a3的值;
(2)求出点An(an,0)(n∈N+)的横坐标an和点An-1(an-1,0)(n>0,n∈N+)横坐标an-1的关系式;
(3)根据(1)的结论猜想an关于n的表达式,并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•闸北区二模)如图,P1(x1,y1),P2(x2,y2),…,Pn(xn,yn),…是曲线C:y2=
1
2
x(y≥0)
上的点,A1(a1,0),A2(a2,0),…,An(an,0),…是x轴正半轴上的点,且△A0A1P1,△A1A2P2,…,△An-1AnPn,…均为斜边在x轴上的等腰直角三角形(A0为坐标原点).
(1)写出an-1、an和xn之间的等量关系,以及an-1、an和yn之间的等量关系;
(2)猜测并证明数列{an}的通项公式;
(3)设bn=
1
an+1
+
1
an+2
+
1
an+3
+…+
1
a2n
,集合B={b1,b2,b3,…,bn,…},A={x|x2-2ax+a2-1<0,x∈R},若A∩B=∅,求实常数a的取值范围.

查看答案和解析>>

同步练习册答案