精英家教网 > 高中数学 > 题目详情
已知数列{an}满足a1=4,且an+1,an,3成等差数列,(其中n∈N*).
(1)求a1-3,a2-3,a3-3的值;
(2)求证:数列{an-3}是等比数列;
(3)求数列{an}的通项公式并求其前n项的和.
分析:(1)由题意可得2an=an+1+3,可得a2=5,a3=7,进而可得其值;
(2)由(1)变形可得
an+1-3
an-3
=2,可得结论;
(3)由(2)可知an-3的通项,进而可得an=2n-1+3,分别由等差,等比的求和公式可得.
解答:解:(1)由题意可得2an=an+1+3,
故可得a2=5,a3=7,
故a1-3=1,a2-3=2,a3-3=4;
(2)由(1)可得2an=an+1+3,
可得2an-6=an+1-3,即2(an-3)=an+1-3,
故可得
an+1-3
an-3
=2,
故数列{an-3}是q=2为公比的等比数列;
(3)由(2)可知an-3=(a1-3)qn-1=2n-1
∴an=2n-1+3,
∴Sn=(1+3)+(2+3)+(4+3)+…+(2n-1+3)
=3n+(1+2+4+…+2n-1)=3n+
1•(1-2n)
1-2
=3n+2n-1
点评:本题考查等比数列的判定和性质,涉及数列的求和,求到通项公式是解决问题的关键,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若数列{bn}满足:bn=
1
an-
1
2
(n∈N*)
,试证明数列bn-1是等比数列;
(2)求数列{anbn}的前n项和Sn
(3)数列{an-bn}是否存在最大项,如果存在求出,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
则{an}的通项公式
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求数列{an}的通项公式;
(2)证明:对于一切正整数n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k项的和S3k(用k,a表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京模拟)已知数列{an}满足an+1=an+2,且a1=1,那么它的通项公式an等于
2n-1
2n-1

查看答案和解析>>

同步练习册答案