精英家教网 > 高中数学 > 题目详情
5、设α、β、r为平面,m、n、l为直线,以下四组条件:①α⊥β,α∩β=l,m⊥l②α∩r=m,α⊥r,β⊥r;③α⊥r,β⊥r,m⊥α;④n⊥αn⊥β,m⊥α;可以作为m⊥β的一个充分条件是
分析:题中线面关系既复杂又抽象,注意到其中包含大量的垂直关系,故可以在正方体内观察,结合线面垂直,面面垂直,线线垂直的判定及性质定理,逐一对已知中的四个结论进行判断即可得到答案.
解答:解:①记面AD1为α,面AC为β,则AD为l,若视AB为m,m⊥l,但m在面β内,故①不满足条件;
②若α、β、γ两两垂直,则可以得到m⊥β,但该条件中没有α⊥β,故反例只可能存在于此处,记面AD1为α,面BB1D1D为β,面AC为γ,则AD为m,但m与β成45°角,故②不满足条件;
③注意到m⊥α,只要α、β不平行,就得不到m⊥β,记面AD1为α,面BB1D1D为β,面AC为γ,视AB为m,但m与β成45°角,故③不满足条件;
④由n⊥α,n⊥β得α∥β,再由m⊥α得m⊥β;故只有④满足条件
故答案为:④
点评:本题考查的知识点是直线与平面垂直的判定,在判断空间线面的关系,常常把他们放在空间几何体中来直观的分析,在判断线与面的平行与垂直关系时,正方体是最常用的空间模型,大家一定要熟练掌握这种方法.另外熟练掌握线线、线面、面面平行(或垂直)的判定及性质定理是解决此类问题的基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

R为平面上不等式组表示的平面区域,则点(xy)在R上变动时,y-2x的最大值和最小值分别是

A.2,-                                                     B.,-

C. ,-                                                D.2,-

查看答案和解析>>

科目:高中数学 来源: 题型:

设R为平面上不等式组表示的平面区域,求点(x,y)在R上变动时,y-2x的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:2011年江苏省南通市高三考前辅导数学试卷(解析版) 题型:解答题

设α、β、r为平面,m、n、l为直线,以下四组条件:①α⊥β,α∩β=l,m⊥l②α∩r=m,α⊥r,β⊥r;③α⊥r,β⊥r,m⊥α;④n⊥αn⊥β,m⊥α;可以作为m⊥β的一个充分条件是   

查看答案和解析>>

科目:高中数学 来源:2011年高三数学精品复习18:线面关系(解析版) 题型:解答题

设α、β、r为平面,m、n、l为直线,以下四组条件:①α⊥β,α∩β=l,m⊥l②α∩r=m,α⊥r,β⊥r;③α⊥r,β⊥r,m⊥α;④n⊥αn⊥β,m⊥α;可以作为m⊥β的一个充分条件是   

查看答案和解析>>