精英家教网 > 高中数学 > 题目详情
(2012•绵阳三模)对于定义在区间D上的函数f(X),若存在闭区间[a,b]?D和常数c,使得对任意x1∈[a,b],都有f(x1)=c,且对任意x2∈D,当x2∉[a,b]时,f(x2)<c恒成立,则称函数f(x)为区间D上的“平顶型”函数.给出下列说法:
①“平顶型”函数在定义域内有最大值;
②函数f(x)=x-|x-2|为R上的“平顶型”函数;
③函数f(x)=sinx-|sinx|为R上的“平顶型”函数;
④当t≤
3
4
时,函数,f(x)=
2,(x≤1)
log
1
2
(x-t),(x>1)
是区间[0,+∞)上的“平顶型”函数.
其中正确的是
①②④
①②④
.(填上你认为正确结论的序号)
分析:根据题意,“平顶型”函数在定义域内某个子集区间内函数值为常数c,且这个常数是函数的最大值,但是定义并没有指出函数最小值的情况.由此定义再结合绝对值的性质和正弦函数的图象与性质,对于四个选项逐个加以判断,即得正确答案.
解答:解:对于①,根据题意,“平顶型”函数在定义域内某个子集区间内函数值为常数c,且这个常数是函数的最大值,故①正确.
对于②,函数f(x)=x-|x-2|=
2x-2 ,  x<2
2 , x≥2
,当且仅当x∈[2,+∞)时,函数的最大值为2,符合“平顶型”函数的定义,故②正确.
对于③,函数f(x)=sinx-|sinx|=
2sinx , x∈[2kπ-π ,2kπ]
0 , x∈[2kπ ,2kπ+π]
,但是不存在区间[a,b],对任意x1∈[a,b],都有f(x1)=2,
所以f(x)不是“平顶型”函数,故③不正确.
对于④当t≤
3
4
时,函数,f(x)=
2,(x≤1)
log
1
2
(x-t),(x>1)
,当且仅当x∈(-∞,1]时,函数的最大值为2,符合“平顶型”函数的定义,故④正确.
故答案为 ①②④.
点评:本题以命题真假的判断为载体,着重考查了函数的最值及其几何意义、带绝对值的函数和正弦函数的定义域值域等知识点,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•绵阳三模)抛物线y=-x2的焦点坐标为
(0,-
1
4
(0,-
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•绵阳三模)已知函数f(x)=Asin(wx+φ)(A>0,w>0,|φ|<
π
2
,x∈R)在一个周期内的图象如图所示.则y=f(x)的图象可由函数y=cosx的图象(纵坐标不变)(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•绵阳三模)已知正项等差数列{an}的前n项和为Sn,且S15=45,M为a5,a11的等比中项,则M的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•绵阳三模)已知函数f(x)=
ax
+blnx+c(a>0)的图象在点(1,f(1))处的切线方程为x-y-2=0.
(I)用a表示b,c;
(II)若函数g(x)=x-f(x)在x∈(0,1]上的最大值为2,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•绵阳三模)某电视台有A、B两种智力闯关游戏,甲、乙、丙、丁四人参加,其中甲乙两人各自独立进行游戏A,丙丁两人各自独立进行游戏B.已知甲、乙两人各自闯关成功的概率均为
1
2
,丙、丁两人各自闯关成功的概率均为
2
3

(I )求游戏A被闯关成功的人数多于游戏B被闯关成功的人数的概率;
(II) 记游戏A、B被闯关成功的总人数为ξ,求ξ的分布列和期望.

查看答案和解析>>

同步练习册答案