精英家教网 > 高中数学 > 题目详情

(本小题满分15分)

        已知抛物线G的顶点在原点,焦点在y轴正半轴上,点P(m,4)到其准线的距离等于5。

   (I)求抛物线G的方程;

   (II)如图,过抛物线G的焦点的直线依次与抛物线G及圆交于A、C、D、B四点,试证明为定值;

 
   (III)过A、B分别作抛物G的切线交于点M,试求面积之和的最小值。

解:(1)由题知,      …………2分

所以抛物线G的方程为             …………4分

   (2)设直线AB方程,直线AB交抛物线G于点

由抛物线定义知 

所以        …………6分

          

显然        

所以为定值1  …………8分

   (3)解法一:由

得直线AM方程        (1)

直线BM方程                      (2)…………9分

由(2)—(1)得

所以点M坐标为           …………10分

点M到直线AB距离    …………11分

弦AB长为

                     …………12分

面积之和

……13分

当k=0时,即AB方程为y=1时,面积之和最小值为2。……15分

解法二:(参考解法一相应步骤给分)由解法一知…………11分

面积之和

其中d为点M到直线AB的距离;

,当且仅当k=0时等号成立。

而当k=0时,d也取到最小值2,             …………13分

当k=0时,即AB方程为y=1时,面积之和最小值为2。

                     …………15分

练习册系列答案
相关习题

科目:高中数学 来源:2012-2013学年福建省高三上学期期中理科数学试卷(解析版) 题型:解答题

(本小题满分15分)

已知函数

(Ⅰ)求函数的单调区间;

(Ⅱ)若,试分别解答以下两小题.

(ⅰ)若不等式对任意的恒成立,求实数的取值范围;

(ⅱ)若是两个不相等的正数,且,求证:

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省高三下学期3月联考理科数学 题型:解答题

(本小题满分15分).

已知分别为椭圆

上、下焦点,其中也是抛物线的焦点,

在第二象限的交点,且

(Ⅰ)求椭圆的方程;

(Ⅱ)已知点P(1,3)和圆,过点P的动直线与圆相交于不同的两点A,B,在线段AB取一点Q,满足:)。求证:点Q总在某定直线上。

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省高三上学期第三次月考数学文卷 题型:解答题

(本小题满分15分)

如图已知,椭圆的左、右焦点分别为,过的直线与椭圆相交于A、B两点。

(Ⅰ)若,且,求椭圆的离心率;

(Ⅱ)若的最大值和最小值。

 

 

 

查看答案和解析>>

科目:高中数学 来源:2014届浙江省宁波市高一上学期期末考试数学 题型:解答题

(本小题满分15分)若函数在定义域内存在区间,满足上的值域为,则称这样的函数为“优美函数”.

(Ⅰ)判断函数是否为“优美函数”?若是,求出;若不是,说明理由;

(Ⅱ)若函数为“优美函数”,求实数的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011年江苏省高二下学期期中考试理数 题型:解答题

(本小题满分15分)在5道题中有3道理科题和2道文科题,如果不放回地依次抽取2道题.求:

(1)第1次抽到理科题的概率;

(2)第1次和第2次都抽到理科题的概率;

(3)在第1次抽到理科题的条件下,第2次抽到文科题的概率

 

 

查看答案和解析>>

同步练习册答案