精英家教网 > 高中数学 > 题目详情
已知数列{an}满足a1=2,an+1=2an-n+1(n∈N+).
(1)证明数列{an-n}是等比数列,并求出数列{an}的通项公式;
(2)数列{bn}满足:bn=
n
2an-2n
(n∈N+),求数列{bn}的前n项和Sn
(3)比较Sn
3n
2n+1
的大小.
(1)证法一:由an+1=2an-n+1,
得an+1-(n+1)=2(an-n),
又a1=2,则a1-1=1,
∴数列{an-n}是以a1-1=1为首项,且公比为2的等比数列,…(3分)
an-n=1×2n-1
an=2n-1+n.…(4分)
证法二:
an+1-(n+1)
an-n
=
2an-n+1-(n+1)
an-n

=
2an-2n
an-n
=2

又a1=2,则a1-1=1,
∴数列{an-n}是以a1-1=1为首项,且公比为2的等比数列,…(3分)
an-n=1×2n-1,∴an=2n-1+n.…(4分)
(2)∵bn=
n
2an-2n

bn=
n
2an-2n
=
n
2n
.…(5分)
∴Sn=b1+b2+…+bn
=
1
2
+2•(
1
2
)2+…+n•(
1
2
)
n
,…①
1
2
Sn=(
1
2
)
2
+2•(
1
2
)
3
+…+
(n-1)(
1
2
)
n
+n•(
1
2
)
n+1
,…②
由①-②,得
1
2
Sn=
1
2
+(
1
2
)
2
+…+(
1
2
)2-n•(
1
2
)
n+1

=
1
2
[1-(
1
2
)
n
]
1-
1
2
-n•(
1
2
)n+1

=1-(n+2)(
1
2
)
n+1
,…(8分)
Sn=2-(n+2)•(
1
2
)
n
.…(9分)
(3)Sn-
3n
2n+1
=2-(n+2)(
1
2
)
n
-
3n
2n+1

=
n+2
2n+1
-(n+2)•(
1
2
)
n

=
(n+2)•[2n-(2n+1)]
(2n+1)•2n

当n=1时,Sn
3n
2n+1

n=2时,Sn
3n
2n+1

n≥3时,2n=
C0n
+
C1n
+…+
Cn-1n
+
Cnn

C0n
+
C1n
+
Cn-1n
=2n+1,
Sn-
3n
2n+1
>0

Sn
3n
2n+1

综上:n=1或2时,Sn
3n
2n+1

n≥3时,Sn
3n
2n+1
.…(12分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若数列{bn}满足:bn=
1
an-
1
2
(n∈N*)
,试证明数列bn-1是等比数列;
(2)求数列{anbn}的前n项和Sn
(3)数列{an-bn}是否存在最大项,如果存在求出,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
则{an}的通项公式
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求数列{an}的通项公式;
(2)证明:对于一切正整数n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k项的和S3k(用k,a表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京模拟)已知数列{an}满足an+1=an+2,且a1=1,那么它的通项公式an等于
2n-1
2n-1

查看答案和解析>>

同步练习册答案