【题目】已知数列{an}的前n项和为Sn,S1=-,an-4SnSn-1=0(n≥2).
(1) 若bn=,求证:{bn}是等差数列;
(2) 求数列{an}的通项公式.
【答案】(1)见解析;(2).
【解析】试题分析:(1)根据an=Sn-Sn-1,结合n≥2时,an-4SnSn-1=0,可得Sn-Sn-1=4SnSn-1,两边同除SnSn-1可得结论;
(2)根据(1)可得Sn=-,结合b1==-4,n≥2时,an-4SnSn-1=0,可得数列{an}的通项公式.
试题解析:
(1) 证明:当n≥2时,由an-4SnSn-1=0,an=4SnSn-1,得Sn-Sn-1=4SnSn-1,
所以-=-4,即bn-bn-1=-4.
又b1==-4,故{bn}是首项为-4,公差为-4的等差数列.
(2) 解:由(1)可得bn=-4-4(n-1)=-4n,即=-4n,所以Sn=-.
当n≥2时,an=Sn-Sn-1=-+==.
当n=1时,a1=-不适合上式.
故.
科目:高中数学 来源: 题型:
【题目】某市居民自来水收费标准如下:每户每月用水不超过5吨时,每吨为元,当用水超过5吨时,超过部分每吨4元。某月甲、乙两户共交水费元,已知甲、乙两户该月用水量分别为吨。
(1)求关于的函数。
(2)若甲、乙两户该月共交水费元,分别求甲、乙两户该月的用水量和水费。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司生产一种电子仪器的固定成本为20 000元,每生产一台仪器需要增加投入100元,已知总收益满足函数:R(x)=其中x是仪器的月产量.当月产量为何值时,公司所获得利润最大?最大利润是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着网络的发展,人们可以在网络上购物、玩游戏、聊天、导航等,所以人们对上网流量的需求越来越大.某电信运营商推出一款新的“流量包”套餐.为了调查不同年龄的人是否愿意选择此款“流量包”套餐,随机抽取50个用户,按年龄分组进行访谈,统计结果如右表.
组 号 | 年龄 | 访谈 人数 | 愿意 使用 |
1 | [18,28) | 4 | 4 |
2 | [28,38) | 9 | 9 |
3 | [38,48) | 16 | 15 |
4 | [48,58) | 15 | 12 |
5 | [58,68) | 6 | 2 |
(Ⅰ)若在第2、3、4组愿意选择此款“流量包”套餐的人中,用分层抽样的方法抽取12人,则各组应分别抽取多少人?
(Ⅱ)若从第5组的被调查者访谈人中随机选取2人进行追踪调查,求2人中至少有1人愿意选择此款“流量包”套餐的概率.
(Ⅲ)按以上统计数据填写下面2×2列联表,并判断以48岁为分界点,能否在犯错误不超过1%的前提下认为,是否愿意选择此款“流量包”套餐与人的年龄有关?
年龄不低于48岁的人数 | 年龄低于48岁的人数 | 合计 | |
愿意使用的人数 | |||
不愿意使用的人数 | |||
合计 |
参考公式:,其中:n=a+b+c+d.
P(k2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某水果店购进某种水果的成本为,经过市场调研发现,这种水果在未来30天的销售单价与时间之间的函数关系式为,销售量与时间的函数关系式为。
(Ⅰ)该水果店哪一天的销售利润最大?最大利润是多少?
(Ⅱ)为响应政府“精准扶贫”号召,该店决定每销售水果就捐赠元给“精准扶贫”对象.欲使捐赠后不亏损,且利润随时间 的增大而增大,求捐赠额的值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,.
(1)如果函数的单调递减区间为,求函数的解析式;
(2)在(1)的条件下,求函数的图象在点处的切线方程;
(3)已知不等式恒成立,若方程恰有两个不等实根,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,直线的方程为,曲线的参数方程为(为参数).
(1)已知在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,点的极坐标为,判断点与曲线的位置关系;
(2)设点是曲线上的一个动点,求它到直线的距离的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某射击运动员每次击中目标的概率都是0.8.现采用随机模拟的方法估计该运动员射击4次,至多击中1次的概率:先由计算器产生0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标;因为射击4次,故以每4个随机数为一组,代表射击4次的结果.经随机模拟产生了20组随机数:
5 727 0 293 7 140 9 857 0 347
4 373 8 636 9 647 1 417 4 698
0 371 6 233 2 616 8 045 6 011
3 661 9 597 7 424 6 710 4 281
据此估计,该射击运动员射击4次至多击中1次的概率为( )
A. 0.95 B. 0.1
C. 0.15 D. 0.05
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com