精英家教网 > 高中数学 > 题目详情
(1)(选修4-4坐标系与参数方程)
已知直线的极坐标方程为ρsin(θ+
π
4
)=
2
2
,则极点到该直线的距离是
2
2
2
2

(2)(选修4-5 不等式选讲)
已知lga+lgb=0,则满足不等式
a
a2+1
+
b
b2+1
≤λ
的实数λ的范围是
[1,+∞)
[1,+∞)

(3)(选修4-1 几何证明选讲)
如图,两个等圆⊙O与⊙O′外切,过O作⊙O′的两条切线OA,OB,A,B是切点,点C在圆O′上且不与点A,B重合,则∠ACB=
60°
60°
分析:(1)把直线、曲线的极坐标方程化为直角坐标方程,利用点到直线的距离公式求出极点到该直线的距离.
(2)由条件可得ab=1,且a、b都为正数,利用基本不等式求出
a
a2+1
+
b
b2+1
的最大值,从而得到实数λ的范围.
(3)连接OO′,AO′,B0′,设圆的半径为r,根据切线的性质可得AO′⊥AO,BO′⊥BO,由两圆相外切可得,OO′=2r,AO′=BO′=r,从而有∠AOO′=∠BOO′=30°,∠AO′B=2×60°=120°,由圆周角定理可得∠ACB=
1
2
∠AO′B的值
解答:解:(1)直线的极坐标方程为ρsin(θ+
π
4
)=
2
2

2
2
ρ•cosθ
+
2
2
ρ•sinθ
=
2
2
,化为直角坐标为 x+y=1.
故极点到该直线的距离为
|0+0-1|
2
=
2
2

故答案为
2
2

(2)∵lga+lgb=0,∴ab=1,且a、b都为正数.
由于
a
a2+1
a
2a
=
1
2
,当且仅当a=1时,等号成立.同理可得
b
b2+1
≤1

a
a2+1
+
b
b2+1
≤1

不等式
a
a2+1
+
b
b2+1
≤λ
 的实数λ的范围是 λ≥1,
故答案为[1,+∞).
(3)解:连接OO′,AO′,B0′,设圆的半径为r
根据切线的性质可得AO′⊥AO,BO′⊥BO
由两圆相外切可得,OO′=2r,AO′=BO′=r
∴∠AOO′=∠BOO′=30°,∠AO′B=2×60°=120°
由圆周角定理可得,∠ACB=
1
2
∠AO′B=60°
故答案为 60°.
点评:本题主要考查了极坐标方程化为直角坐标方程的方法,点到该直线的距离公式,基本不等式的应用,圆的切线的性质、两圆相外切的性质、圆周角定理的综合应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•葫芦岛模拟)选修4-4:坐标系与参数方程.
在平面直角坐标系中,曲线C1的参数方程为
x=acos?
y=bsin?
(a>b>0,?为参数),以Ο为极点,x轴的正半轴为极轴建立极坐标系,曲线C2是圆心在极轴上且经过极点的圆,已知曲线C1上的点M(2,
3
)对应的参数φ=
π
3
;θ=
π
4
;与曲线C2交于点D(
2
π
4

(1)求曲线C1,C2的方程;
(2)A(ρ1,θ),Β(ρ2,θ+
π
2
)是曲线C1上的两点,求
1
ρ
2
1
+
1
ρ
2
2
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(选做题)本题包括A、B、C、D四小题,请选定其中两题,并在答题卡指定区域内作答,若多做,则按作答的前两题评分,解答时应写出文字说明、证明过程或演算步骤.
A.[选修4-1:几何证明选讲]
已知△ABC中,AB=AC,D是△ABC外接圆劣弧AC上的点(不与点A,C重合),延长BD至点E.
求证:AD的延长线平分∠CDE
B.[选修4-2:矩阵与变换]
已知矩阵A=
12
-14

(1)求A的逆矩阵A-1
(2)求A的特征值和特征向量.
C.[选修4-4:坐标系与参数方程]
已知曲线C的极坐标方程为ρ=4sinθ,以极点为原点,极轴为x轴的非负半轴建立平面直角坐标系,直线l的参数方程为
x=
1
2
t
y=
3
2
t+1
(t为参数),求直线l被曲线C截得的线段长度.
D.[选修4-5,不等式选讲](本小题满分10分)
设a,b,c均为正实数,求证:
1
2a
+
1
2b
+
1
2c
1
b+c
+
1
c+a
+
1
a+b

查看答案和解析>>

科目:高中数学 来源: 题型:

附加题:(选做题:在下面A、B、C、D四个小题中只能选做两题)
A.选修4-1:几何证明选讲
如图,已知AB、CD是圆O的两条弦,且AB是线段CD的垂直平分线,
已知AB=6,CD=2
5
,求线段AC的长度.
B.选修4-2:矩阵与变换
已知二阶矩阵A有特征值λ1=1及对应的一个特征向量e1=
1
1
和特征值λ2=2及对应的一个特征向量e2=
1
0
,试求矩阵A.
C.选修4-4:坐标系与参数方程
在直角坐标系xOy中,已知曲线C的参数方程是
y=sinθ+1
x=cosθ
(θ是参数),若以O为极点,x轴的正半轴为极轴,取与直角坐标系中相同的单位长度,建立极坐标系,求曲线C的极坐标方程.
D.选修4-5:不等式选讲
已知关于x的不等式|ax-1|+|ax-a|≥1(a>0).
(1)当a=1时,求此不等式的解集;
(2)若此不等式的解集为R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4~4:坐标系与参数方程
在直角坐标系xOy中,直线l的参数方程为
x=1+tcosα
y=2+tsinα
(t为参数)在极坐标系(与直角坐标系xOy取相同的长度单位.且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为ρ=6sinθ.
(I)求圆C的直角坐标方程;
(Ⅱ)设圆C与直线l交于点A,B.若点P的坐标为(1,2),求|PA|+|PB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(选修4-4:坐标系与参数方程)  
在极坐标系中,已知圆ρ=asinθ(a>0)与直线ρcos(θ+
π4
)=1相切,求实数a的值.

查看答案和解析>>

同步练习册答案