精英家教网 > 高中数学 > 题目详情
17.如图所示,S是△ABC所在平面外一点,且SA⊥平面ABC,AB⊥BC,SA=AB,SB=BC,E是SC的中点,DE⊥SC交AC于D.求二面角E-BD-C的大小.

分析 先证明二面角的棱BD垂直于平面SAC,从而得出了二面角的平面角为∠EDC,故求二面角的大小转化成了求∠EDC的大小

解答 证明:∵SB=BC,E是SC的中点,
∴BE⊥SC,
∵DE⊥SC交AC于D,BE∩DE=E,
∴SC⊥面BDE.
∵BD?平面BDE,∴SC⊥BD,
∵SA⊥平面ABC,BD?平面ABC,∴SA⊥BD,
∵SA∩SC=S,∴BD⊥平面SAC,
∴∠EDC是二面角E-BD-C的平面角,设SA=a,则SB=BC=$\sqrt{2}$a,
∵BC⊥AB,SA⊥平面ABC,
∴BC⊥SB.∴SC=2a,∠SCD=30°.
∴∠EDC=60°,
即二面角E-BD-C的大小是60°.

点评 本题主要考查二面角的求解,根据二面角的定义作出二面角的平面角,结合三角形的边角关系是解决本题的关键.综合考查学生的运算和推理能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.作出下列函数的图象
(1)y=elnx
(2)y=|log2(x+1)|;
(3)y=a|x|(0<a<1);
(4)y=$\frac{2x-1}{x-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知△ABC的内角A,B,C的对边分别为a,b,c,若cosB=$\frac{1}{3}$,A=$\frac{π}{4}$,则$\frac{a}{b}$等于(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在棱长均为a的正三棱锥S一ABC中.
(1)棱锥的高为$\frac{\sqrt{6}}{3}$a;
(2)棱锥的斜高为$\frac{\sqrt{3}}{2}$a;
(3)SA与底面ABC的夹角的余弦值为$\frac{\sqrt{3}}{3}$;
(4)二面角S-BC-A的余弦值为$\frac{1}{3}$;
(5)取BC中点M,连SM,则AC与SM所成的角的余弦值是$\frac{\sqrt{3}}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.正方体的相邻两个侧所成的二面角的度数为90°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,直三棱柱ABC-A1B1C1的各条棱长都相等,D为棱BC上的-点,在截面ADC1中,若∠ADC1=90°,求二面角D-AC1-C的平面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在平面直角坐标系中,已知点A(-1,3),B(3,-3),沿x轴把坐标平面折成60°的二面角后线段AB的长度为(  )
A.5B.7C.2$\sqrt{13}$D.$\sqrt{19}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图所示几何体ABC-A1B1C1中,A1、B1、C1在面ABC上的射影分别是线段AB、BC、AC的中点,面A1B1C1∥面ABC,△ABC是边长为2的等边三角形.
(1)求证:△A1B1C1是等边三角形;
(2)若面ACB1A1⊥面BA1B1,求该几何体ABC-A1B1C1的体积;
(3)在(2)的条件下,求面ABC与面A1B1B所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数f(x)为定义在R上的奇函数,当x≤0时,f(x)=2x-1,则f(x)的值域为(-1,1).

查看答案和解析>>

同步练习册答案