精英家教网 > 高中数学 > 题目详情
(2013•福建)若2x+2y=1,则x+y的取值范围是(  )
分析:根据指数式的运算性质结合基本不等式可把条件转化为关于x+y的不等关系式,进而可求出x+y的取值范围.
解答:解:∵1=2x+2y≥2•(2x2y 
1
2

变形为2x+y
1
4
,即x+y≤-2,当且仅当x=y时取等号.
则x+y的取值范围是(-∞,-2].
故选D.
点评:利用基本不等式,构造关于某个变量的不等式,解此不等式便可求出该变量的取值范围,再验证等号是否成立,便可确定该变量的最值,这是解决最值问题或范围问题的常用方法,应熟练掌握.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•福建)若变量x,y满足约束条件
x+y≤2
x≥1
y≥0
,则z=2x+y的最大值和最小值分别为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•福建)某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为
2
3
,中奖可以获得2分;方案乙的中奖率为
2
5
,中奖可以获得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.
(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为x,求x≤3的概率;
(2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•福建)如图,在四棱柱P-ABCD中,PD⊥平面ABCD,AB∥DC,AB⊥AD,BC=5,DC=3,AD=4,∠PAD=60°.
(I)当正视方向与向量
AD
的方向相同时,画出四棱锥P-ABCD的正视图(要求标出尺寸,并写出演算过程);
(II)若M为PA的中点,求证:DM∥平面PBC;
(III)求三棱锥D-PBC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•福建)若集合A={1,2,3},B={1,3,4},则A∩B的子集个数为(  )

查看答案和解析>>

同步练习册答案