精英家教网 > 高中数学 > 题目详情
1.如果关于x的方程x2+(k+2i)x+3+ki=0有实根,则(  )
A.k≥4或k≤-4B.$k≥\sqrt{2}$或$k≤-2\sqrt{2}$C.$k=±2\sqrt{3}$D.$k=±2\sqrt{2}$

分析 关于x的方程x2+(k+2i)x+3+ki=0有实根,考虑到k是实数,用复数相等的条件可解本题.

解答 解:∵方程x2+(k+2i)x+3+ki=0有实根,不妨令x为实数,∴$\left\{\begin{array}{l}{{x}^{2}+kx+3=0}\\{2x+k=0}\end{array}\right.$,消去x得$\frac{{k}^{2}}{4}-\frac{{k}^{2}}{2}+3=0$,
∴k=±2$\sqrt{3}$.
故选:C.

点评 考查利用复数方程有实根,复数相等解题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.(1)已知tanα=3,计算$\frac{4sinα-2cosα}{5cosα+3sinα}$的值.
(2)已知$tanθ=-\frac{3}{4}$,求2+sinθcosθ-cos2θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知$0<α<π,sinα•cosα=-\frac{1}{2}$,则$\frac{1}{1+sinα}+\frac{1}{1+cosα}$=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列命题正确的是(  )
A.若命题p:?x0∈R,x02-x0+1<0,则¬p:?x∉R,x2-x+1≥0
B.命题“若x=y,则cosx=cosy”的逆否命题为真命题
C.已知随机变量X~N(2,σ2),若P(X<a)=0.32,则P(X>4-a)=0.68
D.已知相关变量(x,y)满足线性回归方程:$\stackrel{∧}{y}$=2-3x,若变量x增加一个单位,则y平均增加3个单位

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,已知AB=2,AC=3,$A=\frac{π}{3}$.
(1)求BC的长.
(2)求cos(A-C)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设变量x,y满足条件$\left\{\begin{array}{l}2x+y-2≥0\\ x-2y+4≥0\\ x-1≤0\end{array}\right.$,则目标函数z=x-y的最小值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率$e=\frac{{\sqrt{2}}}{2}$,且过点$(\frac{{\sqrt{2}}}{2},\frac{{\sqrt{3}}}{2})$.
(1)求椭圆C的方程;
(2)如图,过椭圆C的右焦点F作两条相互垂直的直线AB,DE交椭圆分别于A,B,D,E,且满足$\overrightarrow{AM}=\frac{1}{2}\overrightarrow{AB}$,$\overrightarrow{DN}=\frac{1}{2}\overrightarrow{DE}$,求△MNF面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的离心率为e,则斜率为k的直线与双曲线C的左、右两支都相交的充要条件是(  )
A.k2-e2>1B.k2-e2<1C.e2-k2>1D.e2-k2<1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设正数x,y,z满足不等式$\frac{{x}^{2}+{y}^{2}-{z}^{2}}{2xy}$+$\frac{{y}^{2}+{z}^{2}-{x}^{2}}{2yz}$+$\frac{{z}^{2}+{x}^{2}-{y}^{2}}{2zx}$>1,求证:x,y,z是某个三角形的三边的长.

查看答案和解析>>

同步练习册答案