【题目】已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤
),x=﹣
为f(x)的零点,x=
为y=f(x)图象的对称轴,且f(x)在(
,
)单调,则ω的最大值为 .
【答案】9
【解析】解:∵函数f(x)=sin(ωx+φ)(ω>0,|φ|≤
),x=﹣
为f(x)的零点,x=
为y=f(x)图象的对称轴, ∴ω(﹣
)+φ=nπ,n∈Z,且ω
S+φ=n′π+
,n′∈Z,
∴相减可得ω
=(n′﹣n)π+
=kπ+
,k∈Z,即ω=2k+1,即ω为奇数.
∵f(x)在(
,
)单调,
(i)若f(x)在(
,
)单调递增,
则ω
+φ≥2kπ﹣
,且ω
+φ≤2kπ+
,k∈Z,
即﹣ω
﹣φ≤﹣2kπ+
①,且ω
+φ≤2kπ+
,k∈Z ②,
把①②可得
ωπ≤π,∴ω≤12,故有奇数ω的最大值为11.
当ω=11时,﹣
+φ=kπ,k∈Z,∵|φ|≤
,∴φ=﹣
.
此时f(x)=sin(11x﹣
)在(
,
)上不单调,不满足题意.
当ω=9时,﹣
+φ=kπ,k∈Z,∵|φ|≤
,∴φ=
,
此时f(x)=sin(9x+
)在(
,
)上单调递减,不满足题意;
故此时ω无解.
(ii)若f(x)在(
,
)单调递减,
则ω
+φ≥2kπ+
,且ω
+φ≤2kπ+
,k∈Z,
即﹣ω
﹣φ≤﹣2kπ﹣
③,且ω
+φ≤2kπ+
,k∈Z ④,
把③④可得
ωπ≤π,∴ω≤12,故有奇数ω的最大值为11.
当ω=11时,﹣
+φ=kπ,k∈Z,∵|φ|≤
,∴φ=﹣
.
此时f(x)=sin(11x﹣
)在(
,
)上不单调,不满足题意.
当ω=9时,﹣
+φ=kπ,k∈Z,∵|φ|≤
,∴φ=
,
此时f(x)=sin(9x+
)在(
,
)上单调递减,满足题意;
故ω的最大值为9.
故答案为:9.
先跟据正弦函数的零点以及它的图象的对称性,判断ω为奇数,由f(x)在(
,
)单调,分f(x)在(
,
)单调递增、单调递减两种情况,分别求得ω的最大值,综合可得它的最大值.
科目:高中数学 来源: 题型:
【题目】下列命题,其中说法错误的是( )
A.双曲线
的焦点到其渐近线距离为 ![]()
B.若命题p:?x∈R,使得sinx+cosx≥2,则¬p:?x∈R,都有sinx+cosx<2
C.若p∧q是假命题,则p、q都是假命题
D.设a,b是互不垂直的两条异面直线,则存在唯一平面α,使得a?α,且b∥α
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在正三棱柱ABC﹣A1B1C1中,AB=2,AA1=3,点D为BC的中点;
(Ⅰ)求证:A1B∥平面AC1D;
(Ⅱ)若点E为A1C上的点,且满足
=m
(m∈R),若二面角E﹣AD﹣C的余弦值为
,求实数m的值.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(x﹣1)ex+ax2有两个零点 (Ⅰ)当a=1时,求f(x)的最小值;
(Ⅱ)求a的取值范围;
(Ⅲ)设x1 , x2是f(x)的两个零点,证明:x1+x2<0.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn , 且Sn=2an﹣2(n∈N*).
(1)求数列{an}的通项公式;
(2)若数列{bn}满足
=
﹣
﹣…+(﹣1)n+1
,求数列{bn}的通项公式;
(3)在(2)的条件下,设cn=2n+λbn , 问是否存在实数λ使得数列{cn}(n∈N*)是单调递增数列?若存在,求出λ的取值范围;若不存在,请说明你的理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正项数列{an}的前n项和为Sn , 且
是1与an的等差中项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设Tn为数列{
}的前n项和,证明:
<Tn<1(n∈N*)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-4:坐标系与参数方程选讲]
已知曲线C1的极坐标方程为ρ2cos2θ=8,曲线C2的极坐标方程为
,曲线C1、C2相交于A、B两点.
(Ⅰ)求A、B两点的极坐标;
(Ⅱ)曲线C1与直线
(t为参数)分别相交于M,N两点,求线段MN的长度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高中为了推进新课程改革,满足不同层次学生的需求,决定从高一年级开始,在每周的周一、周三、周五的课外活动期间同时开设数学、物理、化学、生物和信息技术辅导讲座,每位有兴趣的同学可以在期间的任何一天参加任何一门科目的辅导讲座,也可以放弃任何一门科目的辅导讲座.(规定:各科达到预先设定的人数时称为满座,否则称为不满座)统计数据表明,各学科讲座各天的满座的概率如下表:
信息技术 | 生物 | 化学 | 物理 | 数学 | |
周一 |
|
|
|
|
|
周三 |
|
|
|
|
|
周五 |
|
|
|
|
|
根据上表:
(1)求数学辅导讲座在周一、周三、周五都不满座的概率;
(2)设周三各辅导讲座满座的科目数为ξ,求随机变量ξ的分布列和数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com