【题目】已知实数a,b满足﹣2≤a≤2,﹣2≤b≤2,则函数y= x3﹣ ax2+bx﹣1有三个单调区间的概率为( )
A.
B.
C.
D.
【答案】D
【解析】解:∵函数y= x3﹣ ax2+bx﹣1有三个单调区间,就是函数有2个极值点,∴y′=x2﹣ ax+b,存在2个零点, 即x2﹣ ax+b=0有2个实数解,其充要条件是△=2a2﹣4b>0.
即 a2>2b.
如图所示,区域﹣2≤a≤2,﹣2≤b≤2的面积(图中正方形所示)为4
而区域a2≥b,
在条件﹣2≤a≤2,﹣2≤b≤2下的面积(图中阴影所示)为:
8+2∫02( )a2da=8+2×( )|02= .
所求概率为: = .
故选:D.
【考点精析】利用利用导数研究函数的单调性和几何概型对题目进行判断即可得到答案,需要熟知一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减;几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等.
科目:高中数学 来源: 题型:
【题目】一个简单几何体的正视图、侧视图如图所示,则其俯视图可能是( )
①长、宽不相等的长方形 ②正方形 ③圆 ④椭圆.
A.①②
B.①④
C.②③
D.③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,曲线C1的参数方程为 (α为参数).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线 .
(Ⅰ)写出曲线C1 , C2的普通方程;
(Ⅱ)过曲线C1的左焦点且倾斜角为 的直线l交曲线C2于A,B两点,求|AB|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(x﹣ )ex , g(x)=4x2﹣4x+mln(2x)(m∈R),g(x)存在两个极值点x1 , x2(x1<x2).
(1)求f(x1﹣x2)的最小值;
(2)若不等式g(x1)≥ax2恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知斜三棱柱ABC﹣A1B1C1的所有棱长均为2,∠B1BA= ,且侧面ABB1A1⊥底面ABC. (Ⅰ)证明:B1C⊥AC1
(Ⅱ)若M为A1C1的中点,求二面角A﹣B1M﹣A1的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤ ),x=﹣ 为f(x)的零点,x= 为y=f(x)图象的对称轴,且f(x)在( , )单调,则ω的最大值为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]
在直角坐标系xOy中,曲线C1的参数方程为 (α为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+ )=2 .
(1)写出C1的普通方程和C2的直角坐标方程;
(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P的直角坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图程序框图的算法思路源于欧几里得名著《几何原本》中的“辗转相除法”,执行该程序框图,若输入m,n分别为225、135,则输出的m=( )
A.5
B.9
C.45
D.90
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com