精英家教网 > 高中数学 > 题目详情

F是椭圆数学公式的右焦点,A(1,1)为椭圆内一定点,P为椭圆上一动点,则|PA|+|PF|的最小值为________.

4-
分析:设椭圆的左焦点为F',连接PF'、AF',根据椭圆的定义得|PA|+|PF|=4+(|PA|-|PF'|),结合图形可得当P、A、F'三点共线,且P在F'A延长线上时,|PA|-|PF'|取得最小值,利用两点之间距离公式,则不难求出这个最小值.
解答:设椭圆的左焦点为F',连接PF'、AF'
∵点P在椭圆上运动,
∴|PF|+|PF'|=2a=4
由此可得|PA|+|PF|=|PA|+(4-|PF'|)=4+(|PA|-|PF'|)
当P、A、F'三点共线,且P在F'A延长线上时,|PA|-|PF'|取得最小值
∴|PA|-|PF'|的最小值为:-|AF'|==-
由此可得|PA|+|PF|的最大值为4-
故答案为:4-
点评:本题给出椭圆内部一点A和椭圆上动点P,求距离之和的最小值,着重考查了椭圆的标准方程和简单几何性质等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网点A、B分别是椭圆
x2
36
+
y2
20
=1长轴的左、右焦点,点F是椭圆的右焦点.点P在椭圆上,且位于x轴上方,PA⊥PF.
(1)求P点的坐标;
(2)设M是椭圆长轴AB上的一点,M到直线AP的距离等于|MB|,求椭圆上的点到点M的距离d的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①若f'(x0)=0,则函数f(x)在x=x0处有极值;
②m>0是方程
x2
m
+
y2
4
=1
表示椭圆的充要条件;
③若f(x)=(x2-8)ex,则f(x)的单调递减区间为(-4,2);
④A(1,1)是椭圆
x2
4
+
y2
3
=1
内一定点,F是椭圆的右焦点,则椭圆上存在点P,使得PA+2PF的最小值为3.
其中为真命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A(x1,y1),B(x2,y2)是椭圆
x2
25
+
y2
9
=1
上两个不同的点,F是椭圆的右焦点,且|FA|+|FB|=
18
5

(1)求线段AB的中点M的横坐标;
(2)设A、B两点关于直线y=kx+m对称,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年湖南师大附中高三第八次月考数学试卷(文科)(解析版) 题型:填空题

F是椭圆的右焦点,A(1,1)为椭圆内一定点,P为椭圆上一动点,则|PA|+|PF|的最小值为   

查看答案和解析>>

同步练习册答案