【题目】点P为棱长是2的正方体
的内切球O球面上的动点,点M为
的中点,若满足
,则动点P的轨迹的长度为( )
A.
B.
C.
D.![]()
【答案】C
【解析】
根据正方体的性质及
,可判断点
的轨迹为平面
与内切球的交线,即所得小圆的圆周即为动点的轨迹.结合球的几何性质,即可求得小圆的周长,即为动点P的轨迹长度.
根据题意,点P为棱长是2的正方体
的内切球O球面上的动点,点M为
的中点,设
中点为
,
中点为
,如下图所示:
![]()
在平面
中,![]()
由题意可知
,
为
在平面
内的射影,所以直线
在过点
且与
垂直的平面内
又因为
在正方体内切球的球面上
所以点
的轨迹为正方体的内切球与过
且与
垂直的平面相交得到的小圆,即
的轨迹为过
的平面即为平面
与内切球的交线
因为
位于平面
内,
设
到平面
的距离为![]()
所以由
,可得![]()
代入可得
,解得![]()
正方体的内切球半径为![]()
由圆的几何性质可得所截小圆的半径为
所以小圆的周长为![]()
即动点P的轨迹的长度为![]()
故选:C
科目:高中数学 来源: 题型:
【题目】一研学实践活动小组利用课余时间,对某公司1月份至5月份销售某种产品的销售量及销售单价进行了调查,月销售单价
(单位:元)和月销售量
(单位:百件)之间的一组数据如下表所示:
月份 | 1 | 2 | 3 | 4 | 5 |
月销售单价 | 1.6 | 1.8 | 2 | 2.2 | 2.4 |
月销售量 | 10 | 8 | 7 | 6 | 4 |
(1)根据1至5月份的数据,求出
关于
的回归直线方程;
(2)预计在今后的销售中,月销售量与月销售单价仍然服从(1)中的关系,若该种产品的成本是1元/件,那么该产品的月销售单价应定为多少元才能获得最大月利润?(注:利润=销售收入-成本)
(回归直线方程
,其中
.参考数据:
,
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
,直线
与函数
的图象在
处相切,设
,若在区间[1,2]上,不等式
恒成立.则实数m( )
A. 有最大值
B. 有最大值e C. 有最小值e D. 有最小值![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线l的参数方程为
(t为参数,0).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为
.
(Ⅰ)写出曲线C的直角坐标方程;
(Ⅱ)若直线l与曲线C交于A,B两点,且AB的长度为2
,求直线l的普通方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给定椭圆C:
(
),称圆心在原点O,半径为
的圆是椭圆C的“卫星圆”.若椭圆C的离心率
,点
在C上.
(1)求椭圆C的方程和其“卫星圆”方程;
(2)点P是椭圆C的“卫星圆”上的一个动点,过点P作直线
,
使得![]()
![]()
,与椭圆C都只有一个交点,且
,
分别交其“卫星圆”于点M,N,证明:弦长
为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,
是抛物线
的焦点,过点
且与坐标轴不垂直的直线交抛物线于
、
两点,交抛物线的准线于点
,其中
,
.过点
作
轴的垂线交抛物线于点
,直线
交抛物线于点
.
![]()
(1)求
的值;
(2)求四边形
的面积
的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com