精英家教网 > 高中数学 > 题目详情

已知等差数列的首项,公差.且分别是等比数列.
(1)求数列的通项公式;
(2)设数列对任意自然数均有 成立,求的值.

(1);(2).

解析试题分析:本题考查等差数列与等比数列的通项公式、前n项和公式等基础知识,考查思维能力、分析问题与解决问题的能力.第一问,先用等差数列的通项公式将展开,因为成等比,利用等比中项列等式求,直接写出的通项公式,通过求出来的得出,写出数列的通项公式;第二问,用代替已知等式中的,得到新的等式,2个等式相减,把第一问的2通项公式代入得到的通项公式,注意的检验,最后利用等比数列的求和公式求和.
试题解析:(1) ∵成等比数列
,即

又∵
.
(2)∵    ①
,又   ②
①-②:
                              10分
                                11分
  

               12分
考点:1.等差数列的通项公式;2.等比中项;3.等比数列的前n项和公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设数列{an}前n项和为Sn,点均在直线上.
(1)求数列{an}的通项公式;
(2)设,Tn是数列{bn}的前n项和,试求Tn;
(3)设cn=anbn,Rn是数列{cn}的前n项和,试求Rn.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知各项均为正数的数列满足,且,其中.
(Ⅰ)求数列的通项公式;
(Ⅱ)设数列满足是否存在正整数m、n(1<m<n),使得成等比数列?若存在,求出所有的m、n的值,若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列的前n项和为,
(I)证明:数列是等比数列;
(Ⅱ)若,数列的前n项和为,求不超过的最大整数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列的前项和为,且
(Ⅰ)求数列的通项公式;
(Ⅱ)设,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列中,,设
(Ⅰ)试写出数列的前三项;
(Ⅱ)求证:数列是等比数列,并求数列的通项公式
(Ⅲ)设的前项和为,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列满足).
(Ⅰ)求数列的通项公式
(Ⅱ)令,记数列的前项和为,若恒为一个与无关的常数,试求常数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

右表是一个由正数组成的数表,数表中各行依次成等差数列,各列依次成等比数列,且公比都相等,已知

(1)求数列的通项公式;
(2)设求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列中,是常数,),且成公比不为的等比数列.
(Ⅰ)求的值;
(Ⅱ)求的通项公式.

查看答案和解析>>

同步练习册答案