精英家教网 > 高中数学 > 题目详情
已知直线l:mx-y-2m-1=0,m是实数.
(I)直线l恒过定点P,求定点P的坐标;
(II)若原点到直线l的距离是2,求直线l的方程.
分析:(I)直线l 即 m(x-2)+(-y-1)=0,由
x-2=0
-y-1=0
,求得直线经过定点P的坐标.
(II)利用点到直线的距离公式可得
|0-0-2m-1|
m2+1
=2,求得m的值,可得直线l的方程.
解答:解:(I)直线l:mx-y-2m-1=0,
即 m(x-2)+(-y-1)=0.
x-2=0
-y-1=0

求得
x=2
y=-1

故直线经过定点P的坐标为(2,-1).
(II)若原点到直线l的距离是2,
则有
|0-0-2m-1|
m2+1
=2,求得m=
3
4

故直线l的方程为 3x-4y-10=0.
点评:本题主要考查直线过定点问题,点到直线的距离公式的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线l:mx+y-m=0 交圆C:x2+y2-4x-2y=0于A,B两点,当|AB|最短时,直线l的方程是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系xoy中,已知“葫芦”曲线C由圆弧C1与圆弧C2相接而成,两相接点M,N均在直线y=-
2
3
上.圆弧C1所在圆的圆心是坐标原点O,半径为r1=2;圆弧C2过点A(0,-6
2
).
(Ⅰ)求圆弧C2的方程;
(Ⅱ)已知直线l:mx-y-3
2
=0与“葫芦”曲线C交于E,F两点.当|EF|=4+4
2
时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:mx-y+1-m=0与圆C:x2+(y-1)2=5交于A、B两点;
(Ⅰ)若|AB|=
17
,求直线l的倾斜角;
(Ⅱ)求弦AB的中点M的轨迹方程;
(Ⅲ)圆C上是否存在一点P使得△ABP为等边三角形?若存在,求出P点坐标;不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省绍兴一中高二(上)期末数学试卷(文科)(解析版) 题型:解答题

如图,在平面直角坐标系xoy中,已知“葫芦”曲线C由圆弧C1与圆弧C2相接而成,两相接点M,N均在直线y=-上.圆弧C1所在圆的圆心是坐标原点O,半径为r1=2;圆弧C2过点A(0,-6).
(Ⅰ)求圆弧C2的方程;
(Ⅱ)已知直线l:mx-y-3=0与“葫芦”曲线C交于E,F两点.当|EF|=4+4时,求直线l的方程.

查看答案和解析>>

同步练习册答案