分析 (Ⅰ)a=7时便可得出x满足:|x+1|+|x-2|>7,讨论x,从而去掉绝对值符号,这样便可求出每种情况x的范围,求并集即可得出函数f(x)的定义域;
(Ⅱ)由f(x)≥3即可得出|x+1|+|x-2|≥a+8恒成立,而可求出|x+1|+|x-2|≥3,这样便可得出3≥a+8,解出该不等式即可得出实数a的最大值.
解答 解:(Ⅰ)由题设知:|x+1|+|x-2|>7;
①当x>2时,得x+1+x-2>7,解得x>4;
②当1≤x≤2时,得x+1+2-x>7,无解;
③当x<-1时,得-x-1-x+2>7,解得x<-3;
∴函数f(x)的定义域为(-∞,-3)∪(4,+∞);
(Ⅱ)解:不等式f(x)≥3,即|x+1|+|x-2|≥a+8;
∵x∈R时,恒有|x+1|+|x-2|≥|(x+1)-(x-2)|=3;
又不等式|x+1|+|x-2|≥a+8解集是R;
∴a+8≤3,即a≤-5;
∴a的最大值为-5.
点评 本题考查对数的真数大于0,函数定义域的定义及求法,不等式的性质,以及含绝对值不等式的解法,恒成立问题的处理方法.
科目:高中数学 来源: 题型:选择题
| A. | (-3,1) | B. | (0,1) | C. | (-2,2) | D. | (0,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0条 | B. | 1条 | ||
| C. | 多于1条,但为有限条 | D. | 无数多条 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$,2 | B. | $\frac{1}{4}$,4 | C. | $\frac{1}{4}$,2 | D. | $\frac{1}{2}$,4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com