精英家教网 > 高中数学 > 题目详情
6.已知曲线C的参数方程为$\left\{\begin{array}{l}{x=2cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsin($\frac{π}{4}$+θ)=2$\sqrt{2}$
(1)将曲线C上各点的纵坐标伸长为原来的两倍,得到曲线C1,写出曲线C1的极坐标方程.
(2)若射线θ=$\frac{π}{6}$与l的交点分别为A,射线θ=-$\frac{π}{6}$与l的交点分别为B,求△OAB的面积.

分析 (1)设曲线C1上的任意一点(x,y),则$(x,\frac{y}{2})$在曲线C上,可得参数方程:$\left\{\begin{array}{l}{x=2cosθ}\\{y=2sinθ}\end{array}\right.$,消去参数可得直角坐标方程,利用互化公式可得极坐标方程.
(2)射线θ=$\frac{π}{6}$与射线θ=-$\frac{π}{6}$分别代入直线l的极坐标方程可得ρ1,ρ2,利用△OAB的面积S=$\frac{1}{2}$ρ1•ρ2sin$\frac{π}{3}$即可得出.

解答 解:(1)设曲线C1上的任意一点(x,y),则$(x,\frac{y}{2})$在曲线C上,
∴$\left\{\begin{array}{l}{x=2cosθ}\\{\frac{y}{2}=sinθ}\end{array}\right.$,可得参数方程:$\left\{\begin{array}{l}{x=2cosθ}\\{y=2sinθ}\end{array}\right.$,
消去参数可得直角坐标方程:x2+y2=4.
化为极坐标方程:ρ2=4,即ρ=2.
(2)射线θ=$\frac{π}{6}$代入直线l的极坐标方程ρsin($\frac{π}{4}$+θ)=2$\sqrt{2}$,
可得ρ1=$\frac{2\sqrt{2}}{sin(\frac{π}{6}+\frac{π}{4})}$=$\frac{2\sqrt{2}}{\frac{\sqrt{2}+\sqrt{6}}{4}}$=4$(\sqrt{3}-1)$.
射线θ=-$\frac{π}{6}$代入直线l的极坐标方程为ρsin($\frac{π}{4}$+θ)=2$\sqrt{2}$,
可得ρ2=$\frac{2\sqrt{2}}{sin(\frac{π}{4}-\frac{π}{6})}$=$\frac{2\sqrt{2}}{\frac{\sqrt{6}-\sqrt{2}}{4}}$=4$(\sqrt{3}+1)$.
∠AOB=$\frac{π}{3}$.
∴△OAB的面积S=$\frac{1}{2}$ρ1•ρ2sin$\frac{π}{3}$=$\frac{1}{2}$×$4(\sqrt{3}-1)$×4($\sqrt{3}$+1)×$\frac{\sqrt{3}}{2}$=8$\sqrt{3}$.

点评 本题考查了极坐标与直角坐标方程的互化、坐标变换、参数方程化为普通方程及其应用、极坐标的应用、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系的x轴的正半轴重合.曲线C的极坐标方程为7ρ22cos2θ-24=0.
(Ⅰ)求曲线C的直角坐标方程;
(Ⅱ)点(x,y)在曲线C上,试求x-2y的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=b+logax(a>0,a≠1)的图象经过两点A(2,1)和B(8,2).
(1)求解析式f(x)并作出函数f(x)的图象;
(2)解不等式f(x)<$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.抛物线C:y2=4x的焦点为F,准线为l,P为抛物线C上一点,且P在第一象限,PM⊥l交l于点M,线段MF与抛物线C交于点N,若$\frac{|MN|}{|NF|}$=$\sqrt{5}$,则PF的斜率为$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.以坐标原点为极点x轴的正半轴为极轴建立极坐标系,已知曲线${C_1}:{(x-2)^2}+{y^2}=4$,点A的极坐标为$(3\sqrt{2},\frac{π}{4})$,直线l的极坐标方程为$ρcos(θ-\frac{π}{4})=a$,且点A在直线l上.
(1)求曲线C1的极坐标方程和直线l的直角坐标方程;
(2)设l向左平移6个单位后得到l′,l′与C1的交点为M,N,求l′的极坐标方程及|MN|的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.为了判断学生解几何题和代数题能力是否与性别有关,线随机抽取50名学生,得到如下2×2联列表:(单位:人)
几何题代数题总计
男同学22830
女同学81220
总计302050
(1)能否据此判断有97.5%的把握认为解几何题和代数题能力与性别有关?
(2)现从选择做几何题的8名女生中任意抽取两人对她们的答题情况进行全程研究,记甲、乙两女生被抽到的人数为 X,求 X的分布列及数学期望E(X).
(3)经过多次测试后,甲每次解答一道几何题所用的时间在5~7分钟,乙每次解答一道几何题所用的时间在6~8分钟,现甲、乙各解同一道几何题,求乙比甲先解答完的概率.
附表及公式
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(k2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=log2(|x+1|+|x-2|-a).
(Ⅰ)当a=7时,求函数f(x)的定义域;
(Ⅱ)若关于x的不等式f(x)≥3的解集是R,求实数a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在四棱锥P-ABCD中,底面ABCD是菱形,AB=2,∠BAD=60°,PC⊥BD.
(1)证明:PB=PD;
(2)若平面PBD⊥平面ABCD,且∠DPB=90°,求点B到平面PDC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求关于x的不等式m2x+2>2mx+m的解.

查看答案和解析>>

同步练习册答案