精英家教网 > 高中数学 > 题目详情
8.已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系的x轴的正半轴重合.曲线C的极坐标方程为7ρ22cos2θ-24=0.
(Ⅰ)求曲线C的直角坐标方程;
(Ⅱ)点(x,y)在曲线C上,试求x-2y的取值范围.

分析 (Ⅰ)曲线C的极坐标方程为7ρ22cos2θ-24=0.由倍角公式cos2θ=1-2sin2θ,方程变形为3ρ22sin2θ-12=0,利用极坐标与直角坐标互化公式即可得出.
(Ⅱ)由曲线C的直角坐标方程$\frac{x^2}{4}+\frac{y^2}{3}=1$,可设x=2cosθ,y=$\sqrt{3}$sinθ.利用和差公式即可得出.

解答 解:(Ⅰ)曲线C的极坐标方程为7ρ22cos2θ-24=0.
由倍角公式cos2θ=1-2sin2θ,方程变形为3ρ22sin2θ-12=0,
再由ρ2=x2+y2,ρsinθ=y得曲线C的直角坐标方程是$\frac{x^2}{4}+\frac{y^2}{3}=1$.
(Ⅱ)由曲线C的直角坐标方程$\frac{x^2}{4}+\frac{y^2}{3}=1$,可设x=2cosθ,y=$\sqrt{3}$sinθ.
则z=x-2y=$2cosθ-2\sqrt{3}sinθ$=$4sin(\frac{π}{6}-θ)$,则-4≤z≤4,
故x-2y的取值范围是[-4,4].

点评 本题考查了极坐标与直角坐标方程的互化、参数方程与普通方程的互化、三角函数和差公式、三角函数的单调性与值域,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.如图,PA切圆于点A,直线PCB交圆于C,B两点,切线长PA=4$\sqrt{2}$,PC=4,则$\frac{AB}{AC}$等于(  )
A.$\sqrt{2}$B.$\frac{\sqrt{2}}{2}$C.2D.以上结果都不对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图所示,E、F分别是矩形ABCD的边AB、BC上的点(E、F不与边的端点重合).已知线段BF、BC的长分别为m、n、AB、BE的长是关于x的方程x2-18x+mn=0的两个根.
(1)证明:A、E、F、C四点共圆;
(2)若n=2m=8,求四边形AEFC外接圆的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知R上的可导函数f(x)的图象如图所示,两个极值点分别为-1和1,若f′(x)为函数f(x)的导函数,则不等式(x2-2x-3)f′(x)>0的解集为(  )
A.(-∞,-2)∪(1,+∞)B.(-∞,-1)∪(-1,1)∪(3,+∞)C.(-∞,-1)∪(-1,0)∪(2,+∞)D.(-∞,-2)∪(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.中央政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”,为了了解人们对“延迟退休年龄政策”的态度,责成人社部进行调研,人社部从网上年龄在15~65的人群中随机调查50人,调查数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如表:
年龄[15,25)[25,35)[35,45)[45,55)[55,65]
支持“延迟退休”人数5101021
(Ⅰ)由以上统计数据填下面2×2列联表,并问是否有90%的把握认为以45岁为分界点对“延迟退休年龄政策”的支持度有差异;
 45岁以下45岁以上合计
支持   
不支持   
合计   
(Ⅱ)若从年龄在[45,55),[55,65]的被调查人中各随机选取两人进行调查,记选中的4人中支持“延迟退休”人数为ξ,求随机变量ξ的分布列及数学期望.
参考数据:
P(K2≥k)0.1000.0500.0100.001
k2.7063.8416.63510.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}x=\frac{{\sqrt{2}}}{2}t\\ y=-1+\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t为参数),以坐标原点为极点,x轴正半轴为极坐标建立极坐标系,曲线C的极坐标方程为ρcos2θ=2sinθ.
(I)写出直线l和曲线C的直角坐标方程;
(Ⅱ)若动点P在直线l上,Q在曲线C上,求|PQ|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=$\left\{\begin{array}{l}{\frac{2}{x},x≥2}\\{{x}^{2}-3,x<2}\end{array}\right.$,若关于x的方程f(x)=k有三个不相等的实数根,则实数k的取值范围是(  )
A.(-3,1)B.(0,1)C.(-2,2)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.关于x的方程$\frac{a}{x+1}$=1的解是负数,则a的取值范围为a<1且a≠0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知曲线C的参数方程为$\left\{\begin{array}{l}{x=2cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsin($\frac{π}{4}$+θ)=2$\sqrt{2}$
(1)将曲线C上各点的纵坐标伸长为原来的两倍,得到曲线C1,写出曲线C1的极坐标方程.
(2)若射线θ=$\frac{π}{6}$与l的交点分别为A,射线θ=-$\frac{π}{6}$与l的交点分别为B,求△OAB的面积.

查看答案和解析>>

同步练习册答案