13£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=\frac{{\sqrt{2}}}{2}t\\ y=-1+\frac{{\sqrt{2}}}{2}t\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«×ø±ê½¨Á¢¼«×ø±êϵ£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñcos2¦È=2sin¦È£®
£¨I£©Ð´³öÖ±ÏßlºÍÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©Èô¶¯µãPÔÚÖ±ÏßlÉÏ£¬QÔÚÇúÏßCÉÏ£¬Çó|PQ|µÄ×îСֵ£®

·ÖÎö £¨I£©Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=\frac{{\sqrt{2}}}{2}t\\ y=-1+\frac{{\sqrt{2}}}{2}t\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÏûÈ¥²ÎÊýt¿ÉµÃÆÕͨ·½³Ì£®ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñcos2¦È=2sin¦È£¬¼´¦Ñ2cos2¦È=2¦Ñsin¦È£¬ÀûÓÃx=¦Ñcos¦È£¬y=¦Ñsin¦È£¬¼´¿É»¯ÎªÖ±½Ç×ø±ê·½³Ì£®
£¨II£©ÉèQ$£¨x£¬\frac{{x}^{2}}{2}£©$£¬ÔòµãQµ½Ö±ÏßlµÄ¾àÀëd=$\frac{2£¨x-\frac{1}{4}£©^{2}+\frac{15}{8}}{2\sqrt{2}}$£¬ÔÙÀûÓöþ´Îº¯ÊýµÄµ¥µ÷ÐÔ¼´¿ÉµÃ³ö×îСֵ£®

½â´ð ½â£º£¨I£©Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=\frac{{\sqrt{2}}}{2}t\\ y=-1+\frac{{\sqrt{2}}}{2}t\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÏûÈ¥²ÎÊýt¿ÉµÃÆÕͨ·½³Ì£ºx-y-1=0£®
ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñcos2¦È=2sin¦È£¬¼´¦Ñ2cos2¦È=2¦Ñsin¦È£¬¡àÖ±½Ç×ø±ê·½³ÌΪ£ºx2=2y£®
£¨II£©ÉèQ$£¨x£¬\frac{{x}^{2}}{2}£©$£¬ÔòµãQµ½Ö±ÏßlµÄ¾àÀëd=$\frac{|x-\frac{{x}^{2}}{2}-1|}{\sqrt{2}}$=$\frac{2£¨x-\frac{1}{4}£©^{2}+\frac{15}{8}}{2\sqrt{2}}$¡Ý$\frac{15\sqrt{2}}{32}$£®
¡àµ±È¡Q$£¨\frac{1}{4}£¬\frac{1}{32}£©$ʱ£¬|PQ|È¡µÃ×îСֵ$\frac{15\sqrt{2}}{32}$£®

µãÆÀ ±¾Ì⿼²éÁ˼«×ø±êÓëÖ±½Ç×ø±ê·½³ÌµÄ»¥»¯¡¢²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¡¢µãµ½Ö±ÏߵľàÀ빫ʽ¹«Ê½¡¢¶þ´Îº¯ÊýµÄµ¥µ÷ÐÔ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®ÒÑÖªÈýÀâ×¶A-BCDÖУ¬AB¡¢AC¡¢ADÁ½Á½´¹Ö±ÇÒ³¤¶È¾ùΪ10£¬¶¨³¤Îªm£¨m£¼6£©µÄÏß¶ÎMNµÄÒ»¸ö¶ËµãMÔÚÀâABÉÏÔ˶¯£¬ÁíÒ»¸ö¶ËµãNÔÚ¡÷ACDÄÚÔ˶¯£¨º¬±ß½ç£©£¬Ïß¶ÎMNµÄÖеãPµÄ¹ì¼£µÄÃæ»ýΪ2¦Ð£¬ÔòmµÄÖµµÈÓÚ4$\sqrt{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖªÔ²µÄ¼«×ø±ê·½³ÌΪ¦Ñ2-4$\sqrt{2}$¦Ñsin£¨$\frac{3¦Ð}{4}$-¦È£©+6=0£®
£¨1£©½«¼«×ø±ê·½³Ì»¯ÎªÔ²µÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÈôµãP£¨x£¬y£©ÔÚ¸ÃÔ²ÉÏ£¬Çóx+yµÄ×î´óÖµºÍ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªº¯Êýf£¨x£©=$\frac{1}{2}$ax2+4x-lnx£®
£¨1£©µ±a=-3ʱ£¬Çóf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨2£©µ±a¡Ù0ʱ£¬Èôf£¨x£©ÊǼõº¯Êý£¬ÇóaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÒÑÖª¼«×ø±êϵµÄ¼«µãÓëÖ±½Ç×ø±êϵµÄÔ­µãÖØºÏ£¬¼«ÖáÓëÖ±½Ç×ø±êϵµÄxÖáµÄÕý°ëÖáÖØºÏ£®ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ7¦Ñ2-¦Ñ2cos2¦È-24=0£®
£¨¢ñ£©ÇóÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©µã£¨x£¬y£©ÔÚÇúÏßCÉÏ£¬ÊÔÇóx-2yµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÒÑÖªf£¨x£©=$\left\{\begin{array}{l}{|lnx|£¬x£¾0}\\{x+2£¬x¡Ü0}\end{array}\right.$£¬Èô¹ØÓÚxµÄ·½³Ìf2£¨x£©-af£¨x£©+b=0ÓÐ6¸ö²»Í¬µÄ½â£¬ÔòaµÄȡֵ·¶Î§Îª£¨¡¡¡¡£©
A£®£¨0£¬3£©B£®£¨0£¬4£©C£®£¨0£¬4]D£®[1£¬4]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®Èôx2+4y2=5£¬Ôòx+yµÄ×îСֵΪ$-\frac{5}{2}$£¬×îСֵµãΪ£¨-2£¬$-\frac{1}{2}$£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªÏòÁ¿$\overrightarrow{a}$=£¨cosx£¬sinx£©£¬$\overrightarrow{b}$=£¨cosx£¬-sinx£©£®
£¨1£©Èôº¯Êýf£¨x£©=2$\overrightarrow{a}$•$\overrightarrow{b}$+1£¬Çóº¯Êýf£¨x£©µÄÖÜÆÚºÍ×îÖµ£»
£¨2£©Èô$\overrightarrow{a}$¡Î$\overrightarrow{b}$£¬ÇÒx¡Ê[$\frac{¦Ð}{6}$£¬$\frac{2¦Ð}{3}$]£¬ÇóxµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÎªÁËÅжÏѧÉú½â¼¸ºÎÌâºÍ´úÊýÌâÄÜÁ¦ÊÇ·ñÓëÐÔ±ðÓйأ¬ÏßËæ»ú³éÈ¡50ÃûѧÉú£¬µÃµ½ÈçÏÂ2¡Á2ÁªÁÐ±í£º£¨µ¥Î»£ºÈË£©
¼¸ºÎÌâ´úÊýÌâ×ܼÆ
ÄÐͬѧ22830
Ůͬѧ81220
×ܼÆ302050
£¨1£©ÄÜ·ñ¾Ý´ËÅжÏÓÐ97.5%µÄ°ÑÎÕÈÏΪ½â¼¸ºÎÌâºÍ´úÊýÌâÄÜÁ¦ÓëÐÔ±ðÓйأ¿
£¨2£©ÏÖ´ÓÑ¡Ôñ×ö¼¸ºÎÌâµÄ8ÃûÅ®ÉúÖÐÈÎÒâ³éÈ¡Á½È˶ÔËýÃǵĴðÌâÇé¿ö½øÐÐÈ«³ÌÑо¿£¬¼Ç¼×¡¢ÒÒÁ½Å®Éú±»³éµ½µÄÈËÊýΪ X£¬Çó XµÄ·Ö²¼Áм°ÊýѧÆÚÍûE£¨X£©£®
£¨3£©¾­¹ý¶à´Î²âÊԺ󣬼×ÿ´Î½â´ðÒ»µÀ¼¸ºÎÌâËùÓõÄʱ¼äÔÚ5¡«7·ÖÖÓ£¬ÒÒÿ´Î½â´ðÒ»µÀ¼¸ºÎÌâËùÓõÄʱ¼äÔÚ6¡«8·ÖÖÓ£¬Ïּס¢ÒÒ¸÷½âͬһµÀ¼¸ºÎÌ⣬ÇóÒұȼ×ÏȽâ´ðÍêµÄ¸ÅÂÊ£®
¸½±í¼°¹«Ê½
K2=$\frac{n£¨ad-bc£©^{2}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$
P£¨k2¡Ýk£©0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸