精英家教网 > 高中数学 > 题目详情
3.已知三棱锥A-BCD中,AB、AC、AD两两垂直且长度均为10,定长为m(m<6)的线段MN的一个端点M在棱AB上运动,另一个端点N在△ACD内运动(含边界),线段MN的中点P的轨迹的面积为2π,则m的值等于4$\sqrt{2}$.

分析 如图所示,由三棱锥A-BCD中,AB、AC、AD两两垂直,可得MA⊥AN.即∠MAN=90°,可得AP=$\frac{1}{2}$m,且点P的运动轨迹为圆弧,是以点A为圆心,$\frac{1}{2}$m为半径的圆的$\frac{1}{4}$,利用面积计算公式即可得出.

解答 解:如图所示
∵三棱锥A-BCD中,AB、AC、AD两两垂直,
∴MA⊥AN.
∴∠MAN=90°,点P是线段MN的中点,
可得AP=$\frac{1}{2}$m,且点P的运动轨迹为圆弧,
是以点A为圆心,$\frac{1}{2}$m为半径的圆的$\frac{1}{4}$,
∴$\frac{1}{4}$×$π(\frac{1}{2}m)^{2}$=2π,
解得m=4$\sqrt{2}$.
故答案为:4$\sqrt{2}$.

点评 本题考查了空间位置关系、直角三角形的性质、圆的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.直线$\left\{\begin{array}{l}{x=-2-\sqrt{2}t}\\{y=3+\sqrt{2}t}\end{array}\right.$(t为参数)上与点A(-2,3)的距离等于$\sqrt{2}$的点的坐标是(  )
A.(-4,5)B.(-3,4)C.(-3,4)或 (-1,2)D.(-4,5)或(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=(α+2cos2x)cos(2x+θ)为奇函数,且f($\frac{π}{4}$)=0,其中α∈R,θ∈(0,π),求α,θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=ex-a(x-1)(a∈R).
(1)求函数f(x)的单调区间;
(2)若m,n,p满足|m-p|<|n-p|恒成立,则称m比n更靠近p.在函数f(x)有极值的前提下,当x≥1时,$\frac{e}{x}$比ex-1+a更靠近lnx,试求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图,PA切圆于点A,直线PCB交圆于C,B两点,切线长PA=4$\sqrt{2}$,PC=4,则$\frac{AB}{AC}$等于(  )
A.$\sqrt{2}$B.$\frac{\sqrt{2}}{2}$C.2D.以上结果都不对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,△ABC是⊙O的内接三角形,BT是⊙O的切线,P是线段AB上一点,过P作BC的平行直线与BT交于E点,与AC交于F点.
(Ⅰ)求证:PE•PF=PA•PB;
(Ⅱ)若AB=4$\sqrt{2}$,cos∠EBA=$\frac{1}{3}$,求⊙O的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求函数f(x)=2x3-6x2+7的极值和单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知f(x)是定义在R上的奇函数,且x>0时有f(1)=0,xf′(x)-f(x)>0,则不等式f(x)>0的解集是(-1,0)∪(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}x=\frac{{\sqrt{2}}}{2}t\\ y=-1+\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t为参数),以坐标原点为极点,x轴正半轴为极坐标建立极坐标系,曲线C的极坐标方程为ρcos2θ=2sinθ.
(I)写出直线l和曲线C的直角坐标方程;
(Ⅱ)若动点P在直线l上,Q在曲线C上,求|PQ|的最小值.

查看答案和解析>>

同步练习册答案