精英家教网 > 高中数学 > 题目详情
18.已知f(x)=$\left\{\begin{array}{l}{|lnx|,x>0}\\{x+2,x≤0}\end{array}\right.$,若关于x的方程f2(x)-af(x)+b=0有6个不同的解,则a的取值范围为(  )
A.(0,3)B.(0,4)C.(0,4]D.[1,4]

分析 设t=f(x),作出函数t=f(x)的图象,根据条件转化为一元二次方程根的分布问题,然后建立不等式组,利用线性规划的知识进行求解.

解答 解:设t=f(x),则方程等价为t2-at+b=0.
作出函数t=f(x)的图象如图:
当y=t≥2时,t=f(x)有两个根,
当0<t<2时,t=f(x)有三个根,
当t=0时,t=f(x)有两个根,
当t<0时,t=f(x)有一个根,
若程f2(x)-af(x)+b=0有6个不同的解,
则等价为t2-at+b=0有两个不同的根,满足0<t1<2,0<t2<2,
设h(t)=t2-at+b,
则满足$\left\{\begin{array}{l}{△={a}^{2}-4b≥0}\\{0<-\frac{-a}{2}<2}\\{h(0)=b>0}\\{h(2)=4-2a+b>0}\end{array}\right.$,即$\left\{\begin{array}{l}{4b≤{a}^{2}}\\{0<a<4}\\{b>0}\\{-2a+b+4>0}\end{array}\right.$,
作出不等式组对应的平面区域如图阴影部分,

由$\left\{\begin{array}{l}{-2a+b+4=0}\\{4b={a}^{2}}\end{array}\right.$,得$\left\{\begin{array}{l}{a=4}\\{b=4}\end{array}\right.$,即B(4,4),
其中0<a<4,
故实数a的取值范围是(0,4),
故选:B.

点评 本题主要考查函数与方程的应用,利用换元法结合数形结合转化为一元二次方程根的分布,结合线性规划的知识是解决本题的关键.综合性较强,涉及的知识点较多.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.如图,△ABC是⊙O的内接三角形,BT是⊙O的切线,P是线段AB上一点,过P作BC的平行直线与BT交于E点,与AC交于F点.
(Ⅰ)求证:PE•PF=PA•PB;
(Ⅱ)若AB=4$\sqrt{2}$,cos∠EBA=$\frac{1}{3}$,求⊙O的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在平面直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=2cosα+1}\\{y=2sinα}{\;}\end{array}\right.$(α为参数).以平面直角坐标系的原点O为极点,x轴的非负半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=4sinθ.
(Ⅰ)求曲线C1的普通方程和曲线C2的直角坐标方程;
(Ⅱ)求曲线C1和C2公共弦的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=ax2-(a+2)x+lnx.
(Ⅰ)当a=-2时,求函数f(x)极值;
(Ⅱ)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}x=\frac{{\sqrt{2}}}{2}t\\ y=-1+\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t为参数),以坐标原点为极点,x轴正半轴为极坐标建立极坐标系,曲线C的极坐标方程为ρcos2θ=2sinθ.
(I)写出直线l和曲线C的直角坐标方程;
(Ⅱ)若动点P在直线l上,Q在曲线C上,求|PQ|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在平面直角坐标系中,曲线C1的参数方程$\left\{\begin{array}{l}x=3cosφ\\ y=2sinφ\end{array}$(φ为参数),以O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2是圆心在极轴上且经过极点的圆,射线θ=$\frac{π}{3}$与曲线C2交于点D(4,$\frac{π}{3}}$).
(1)求曲线C1的普通方程及C2的直角坐标方程;
(2)在极坐标系中,A(ρ1,θ),B(ρ2,θ+$\frac{π}{2}}$)是曲线C1上的两点,求$\frac{1}{ρ_1^2}+\frac{1}{ρ_2^2}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知sinα+cosα=$\frac{1}{2}$,求下列各式的值:
(1)sinαcosα;
(2)sin3α+cos3α

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知命题p:|x-1|<c(c>0);命题q:|x-5|>2,且p是q的既不充分也不必要条件,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在平面直角坐标系中,椭圆C的参数方程为$\left\{{\begin{array}{l}{x=2cosθ}\\{y=sinθ}\end{array}}\right.$(θ为参数),已知以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,射线l的极坐标方程为θ=α(ρ≥0)(注:本题限定:ρ≥0,θ∈[0,2π))
(1)把椭圆C的参数方程化为极坐标方程;
(2)设射线l与椭圆C相交于点A,然后再把射线l逆时针90°,得到射线OB与椭圆C相交于点B,试确定$\frac{1}{{{{|{OA}|}^2}}}+\frac{1}{{{{|{OB}|}^2}}}$是否为定值,若为定值求出此定值,若不为定值请说明理由.

查看答案和解析>>

同步练习册答案