9£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2cos¦Á+1}\\{y=2sin¦Á}{\;}\end{array}\right.$£¨¦ÁΪ²ÎÊý£©£®ÒÔÆ½ÃæÖ±½Ç×ø±êϵµÄÔ­µãOΪ¼«µã£¬xÖáµÄ·Ç¸º°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñ=4sin¦È£®
£¨¢ñ£©ÇóÇúÏßC1µÄÆÕͨ·½³ÌºÍÇúÏßC2µÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÇóÇúÏßC1ºÍC2¹«¹²Ïҵij¤¶È£®

·ÖÎö £¨I£©ÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2cos¦Á+1}\\{y=2sin¦Á}{\;}\end{array}\right.$£¨¦ÁΪ²ÎÊý£©£¬ÀûÓÃcos2¦Á+sin2¦Á=1ÏûÈ¥²ÎÊý¦Á¿ÉµÃÆÕͨ·½³Ì£®ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñ=4sin¦È£¬¼´¦Ñ2=4¦Ñsin¦È£¬ÀûÓæÑ2=x2+y2£¬y=¦Ñsin¦È£¬¼´¿É»¯ÎªÖ±½Ç×ø±ê·½³Ì£®
£¨II£©Á½Ô²µÄÖ±½Ç×ø±ê·½³ÌÏà¼õ¿ÉµÃ¹«¹²ÏÒËùÔÚµÄÖ±Ïß·½³Ì£º2x-4y+3=0£®Çó³öÔ²ÐÄC1µ½¹«¹²ÏÒËùÔÚµÄÖ±ÏߵľàÀëd£®ÀûÓù«¹²ÏÒ³¤=2$\sqrt{{r}_{1}^{2}-{d}^{2}}$¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨I£©ÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2cos¦Á+1}\\{y=2sin¦Á}{\;}\end{array}\right.$£¨¦ÁΪ²ÎÊý£©£¬ÏûÈ¥²ÎÊý¦Á¿ÉµÃÆÕͨ·½³Ì£º£¨x-1£©2+y2=4£¬¼´x2+y2-2x=3£®
ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñ=4sin¦È£¬¼´¦Ñ2=4¦Ñsin¦È£¬¿ÉµÃÖ±½Ç×ø±ê·½³Ì£ºx2+y2=4y£¬Å䷽Ϊx2+£¨y-2£©2=4£®
£¨II£©x2+y2-2x=3Óëx2+y2=4yÏà¼õ¿ÉµÃ¹«¹²ÏÒËùÔÚµÄÖ±Ïß·½³Ì£º2x-4y+3=0£®
Ô²ÐÄC1£¨1£¬0£©µ½¹«¹²ÏÒËùÔÚµÄÖ±ÏߵľàÀëd=$\frac{|2+3|}{\sqrt{{2}^{2}+£¨-4£©^{2}}}$=$\frac{\sqrt{5}}{2}$£®
¡à¹«¹²ÏÒ³¤=2$\sqrt{{2}^{2}-£¨\frac{\sqrt{5}}{2}£©^{2}}$=$\sqrt{11}$£®

µãÆÀ ±¾Ì⿼²éÁ˼«×ø±êÓëÖ±½Ç×ø±ê·½³ÌµÄ»¥»¯¡¢²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¡¢Á½ÏཻԲµÄ¹«¹²ÏÒ³¤¡¢µãµ½Ö±ÏߵľàÀ빫ʽ¹«Ê½£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®ÔÚ¼«×ø±êϵÖУ¬¹ýµã£¨2$\sqrt{2}$£¬-$\frac{¦Ð}{4}}$£©×÷Ô²¦Ñ=4cos¦ÈµÄÇÐÏߣ¬ÔòÇÐÏߵļ«×ø±ê·½³ÌÊǦÑsin¦È=-2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖªÊýÁÐ{an}ÖжÔÓÚÈÎÒâÕýÕûÊýn¶¼ÓÐan+1=${a}_{n}^{2}$+can£¬ÆäÖÐcΪʵ³£Êý£®
£¨¢ñ£©Èôc=2£¬a1=1£¬ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©Èôc=0£¬¼ÇTn=£¨a1-a2£©a3+£¨a2-a3£©a4+¡­+£¨an-an+1£©an+2£¬Ö¤Ã÷£º
1£©µ±0£¼a1¡Ü$\frac{1}{2}$ʱ£¬Tn£¼$\frac{1}{32}$£»
2£©µ±$\frac{1}{2}$£¼a1£¼1ʱ£¬Tn£¼$\frac{1}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®¶¨Òåg£¨x£©=f£¨x£©-xµÄÁãµãx0Ϊf£¨x£©µÄ²»¶¯µã£¬ÒÑÖªº¯Êýf£¨x£©=ax2+£¨b+1£©x+b-1£¨a¡Ù0£©£®
£¨1£©µ±a=1£¬b=-2ʱ£¬Çóº¯ÊýµÄ²»¶¯µã£»
£¨2£©¶ÔÓÚÈÎÒâʵÊýb£¬º¯Êýf£¨x£©ºãÓÐÁ½¸öÏàÒìµÄ²»¶¯µã£¬ÇóʵÊýaµÄȡֵ·¶Î§£»
£¨3£©Èôº¯Êýg£¨x£©Ö»ÓÐÒ»¸öÁãµãÇÒb£¾1£¬ÇóʵÊýaµÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖªÔ²µÄ¼«×ø±ê·½³ÌΪ¦Ñ2-4$\sqrt{2}$¦Ñsin£¨$\frac{3¦Ð}{4}$-¦È£©+6=0£®
£¨1£©½«¼«×ø±ê·½³Ì»¯ÎªÔ²µÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÈôµãP£¨x£¬y£©ÔÚ¸ÃÔ²ÉÏ£¬Çóx+yµÄ×î´óÖµºÍ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®Èôatan¦Á£¾btan¦Á£¾1£¬£¨a£¾0¡¢a¡Ù1£¬b£¾0£¬b¡Ù1£¬$\frac{¦Ð}{2}$£¼¦Á£¼¦Ð£©£¬Ôò£¨¡¡¡¡£©
A£®a£¾b£¾1B£®b£¾a£¾1C£®a£¼b£¼1D£®b£¼a£¼1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªº¯Êýf£¨x£©=$\frac{1}{2}$ax2+4x-lnx£®
£¨1£©µ±a=-3ʱ£¬Çóf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨2£©µ±a¡Ù0ʱ£¬Èôf£¨x£©ÊǼõº¯Êý£¬ÇóaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÒÑÖªf£¨x£©=$\left\{\begin{array}{l}{|lnx|£¬x£¾0}\\{x+2£¬x¡Ü0}\end{array}\right.$£¬Èô¹ØÓÚxµÄ·½³Ìf2£¨x£©-af£¨x£©+b=0ÓÐ6¸ö²»Í¬µÄ½â£¬ÔòaµÄȡֵ·¶Î§Îª£¨¡¡¡¡£©
A£®£¨0£¬3£©B£®£¨0£¬4£©C£®£¨0£¬4]D£®[1£¬4]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªº¯Êýf£¨x£©=$\frac{1}{x}$-alnx£¨a¡ÊR£©£®
£¨¢ñ£©Èôh£¨x£©=f£¨x£©-2x£¬µ±a=-3ʱ£¬Çóh£¨x£©µÄµ¥µ÷µÝ¼õÇø¼ä£»
£¨¢ò£©Èôº¯Êýf£¨x£©ÓÐΨһµÄÁãµã£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸