精英家教网 > 高中数学 > 题目详情
17.定义g(x)=f(x)-x的零点x0为f(x)的不动点,已知函数f(x)=ax2+(b+1)x+b-1(a≠0).
(1)当a=1,b=-2时,求函数的不动点;
(2)对于任意实数b,函数f(x)恒有两个相异的不动点,求实数a的取值范围;
(3)若函数g(x)只有一个零点且b>1,求实数a的最小值.

分析 (1)代入求出f(x)的表达式,根据零点的概念求出不动点;
(2)把动点问题转化为二次函数有解恒成立问题,求解即可;
(3)动点问题转化为二次函数有一解得出4a=$\frac{{b}^{2}}{b-1}$,利用分离参数法得出4a=$\frac{{b}^{2}}{b-1}$=(b-1)+$\frac{1}{b-1}$+2,由均值不等式得出答案.

解答 解:(1)∵f(x)=x2-x-3
$\begin{array}{l}{x^2}-x-3-x=0,\\ x=3或-1\end{array}$
函数f(x)的不动点为3,-1;…(3分)
(2)对于任意实数b,函数f(x)恒有两个相异的不动点,
则对于任意实数b,f(x)-x=0恒有两个不等的实数根
∴ax2+bx+b-1=0,△>0恒成立,
∴b2-4a(b-1)>0,
∴b2-4ab+4a>0对任意实数b都成立,
∴△=16a2-16a<0,
∴0<a<1…(8分);
(3)g(x)=ax2+bx+b-1,函数g(x)只有一个零点,b>1
则△=0,
∴b2-4ab+4a=0,
∴4a=$\frac{{b}^{2}}{b-1}$=(b-1)+$\frac{1}{b-1}$+2≥4,
当且仅当b=2时等号成立,
∵a≥1,
a的最小值为1.…(12分)

点评 本题考查了对题意的理解和二次函数的应用,分离常数法的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.求下列各式中x的值:
(1)log64x=-$\frac{2}{3}$;
(2)logx8=6;
(3)1g100=x;
(4)-lne2=x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,△ABC是⊙O的内接三角形,BT是⊙O的切线,P是线段AB上一点,过P作BC的平行直线与BT交于E点,与AC交于F点.
(Ⅰ)求证:PE•PF=PA•PB;
(Ⅱ)若AB=4$\sqrt{2}$,cos∠EBA=$\frac{1}{3}$,求⊙O的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数f(x)=lnx-ax+$\frac{1-a}{x}$-1
(1)若f(x)在$[{\frac{1}{4},\frac{1}{2}}]$上单调递增,求实数a的取值范围;
(2)当a>$\frac{1}{3}$时,设函数g(x)=x2-2x-1,若?x1∈[1,2],?x2∈[0,2],使f(x1)≥g(x2)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知f(x)是定义在R上的奇函数,且x>0时有f(1)=0,xf′(x)-f(x)>0,则不等式f(x)>0的解集是(-1,0)∪(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图所示,侧棱与底面垂直,且底面为正方形的四棱柱ABCD-A1B1C1D1中,AA1=2,AB=1,M、N分别在AD1、BC上移动,始终保持MN∥平面DCC1D1,设BN=y,MN=x,则函数y=f(x)的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在平面直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=2cosα+1}\\{y=2sinα}{\;}\end{array}\right.$(α为参数).以平面直角坐标系的原点O为极点,x轴的非负半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=4sinθ.
(Ⅰ)求曲线C1的普通方程和曲线C2的直角坐标方程;
(Ⅱ)求曲线C1和C2公共弦的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=ax2-(a+2)x+lnx.
(Ⅰ)当a=-2时,求函数f(x)极值;
(Ⅱ)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知命题p:|x-1|<c(c>0);命题q:|x-5|>2,且p是q的既不充分也不必要条件,求c的取值范围.

查看答案和解析>>

同步练习册答案