精英家教网 > 高中数学 > 题目详情
2.如图所示,侧棱与底面垂直,且底面为正方形的四棱柱ABCD-A1B1C1D1中,AA1=2,AB=1,M、N分别在AD1、BC上移动,始终保持MN∥平面DCC1D1,设BN=y,MN=x,则函数y=f(x)的图象大致是(  )
A.B.C.D.

分析 由MN∥平面DCC1D1,过M点向AD做垂线,垂足为E,则ME=2AE=2BN,由此易得到函数y=f(x)的解析式,分析函数的性质,并逐一比照四个答案中的图象,得到函数的图象.

解答 解:MN∥平面DCC1D1
则x=|MN|=$\sqrt{C{D}^{2}+(2BN)^{2}}=\sqrt{4{y}^{2}+1}$,
∴x2=4y2+1,即$y=\frac{1}{2}\sqrt{{x}^{2}-1}$.
即函数y=f(x)的解析式为
f(x)=$\frac{1}{2}\sqrt{{x}^{2}-1}$(x≥1).
其图象过(1,0)点,在区间[1,+∞)上呈凸状单调递增.
故选:C.

点评 本题考查的知识点是线面平行的性质,函数的图象与性质等,根据已知列出函数的解析式是解答本题的关键,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知数列{an}中,a1=$\frac{1}{2}$,2an=an-1+($\frac{1}{2}$)n,求通项公式和a7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知三棱柱ABO-DCE的顶点A、B、C、D、E均在以顶点O为球心、半径为2的球面上,其中AB=2,则三棱柱的侧面积为(  )
A.2+2$\sqrt{3}$B.2+4$\sqrt{3}$C.4+4$\sqrt{3}$D.4+6$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在△ABC中,点D为AC的中点,点E在DB的延长线上,且$\overrightarrow{DB}$=2$\overrightarrow{BE}$,点M在线段BE上,若$\overrightarrow{AM}$=$λ\overrightarrow{AB}$+$μ\overrightarrow{AC}$,则λ+μ的取值范围是[1,$\frac{5}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.定义g(x)=f(x)-x的零点x0为f(x)的不动点,已知函数f(x)=ax2+(b+1)x+b-1(a≠0).
(1)当a=1,b=-2时,求函数的不动点;
(2)对于任意实数b,函数f(x)恒有两个相异的不动点,求实数a的取值范围;
(3)若函数g(x)只有一个零点且b>1,求实数a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在极坐标系中,两条曲线的极坐标方程分别为ρ=1,ρ=2sin($\frac{π}{6}$-θ),它们相交于A,B两点,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若atanα>btanα>1,(a>0、a≠1,b>0,b≠1,$\frac{π}{2}$<α<π),则(  )
A.a>b>1B.b>a>1C.a<b<1D.b<a<1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在平面直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=-2-t}\\{y=2-\sqrt{3}t}\end{array}\right.$(t为参数),以原点为极点,x轴的非负半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2cos2θ+4ρsinθ=3,直线l与曲线C交于A,B两点.
(Ⅰ)求曲线C的直角坐标方程;
(Ⅱ)求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知x,y满足约束条件$\left\{\begin{array}{l}{x≥2}\\{x+y≤4}\\{-2x+y+c≥0}\end{array}\right.$目标函数z=6x+2y的最小值是10,则z的最大值是(  )
A.20B.22C.24D.26

查看答案和解析>>

同步练习册答案