精英家教网 > 高中数学 > 题目详情
4.已知数列{an}中,a1=$\frac{1}{2}$,2an=an-1+($\frac{1}{2}$)n,求通项公式和a7

分析 2an=an-1+($\frac{1}{2}$)n,n≥2时,变形为:2n+1an-2nan-1=1,利用等差数列的通项公式即可得出.

解答 解:∵2an=an-1+($\frac{1}{2}$)n,n≥2时,变形为:2n+1an-2nan-1=1,
∴数列{2n+1an}是等差数列,首项为2,公差为1.
∴2n+1an=2+(n-1)=n+1,
∴an=$\frac{n+1}{{2}^{n+1}}$.
∴a7=$\frac{8}{{2}^{8}}$=$\frac{1}{{2}^{5}}$=$\frac{1}{32}$.

点评 本题考查了递推关系、等差数列的通项公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.如图是函数y=f(x)的导函数y=f′(x)的图象,则下面判断正确的是(  )
A.在区间(1,3)内f(x)是减函数B.当x=1时,f(x)取到极大值
C.在(4,5)内f(x)是增函数D.当x=2时,f(x)取到极小值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在平面直角坐标系xOy中,圆C的参数方程为$\left\{{\begin{array}{l}{x=2cosφ}\\{y=2sinφ}\end{array}}$(φ为参数),直线l过点(0,2)且倾斜角为$\frac{π}{3}$.
(Ⅰ)求圆C的普通方程及直线l的参数方程;
(Ⅱ)设直线l与圆C交于A,B两点,求弦|AB|的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.集合A={x∈N|$\frac{3}{5-x}$∈Z}的非空真子集的个数为(  )
A.6B.8C.14D.15

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求下列各式中x的值:
(1)log64x=-$\frac{2}{3}$;
(2)logx8=6;
(3)1g100=x;
(4)-lne2=x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.$\underset{lim}{n→∞}$$\frac{6-2+4-8+…+(-2)^{n+1}}{4+3+9+27+…+{3}^{n}}$=$\frac{32}{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.三棱锥P-ABC中,PA⊥平面ABC,PA=3,AC=4,PB=PC=BC.
(1)求二面角P-BC-A的大小
(2)求二面角A-PC-B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=4cosxsin(x-$\frac{π}{6}$),x∈R.
(1)求f(x)的最小正周期;
(2)若方程f(x)=2m-1在[0,$\frac{π}{2}$]上有两个不等的实根,求实数m的取值范围及两根之和;
(3)在△ABC中,BC=4,sinC=2sinB,若f(x)的最大值为f(A),求△ABC内切圆的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图所示,侧棱与底面垂直,且底面为正方形的四棱柱ABCD-A1B1C1D1中,AA1=2,AB=1,M、N分别在AD1、BC上移动,始终保持MN∥平面DCC1D1,设BN=y,MN=x,则函数y=f(x)的图象大致是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案