分析 2an=an-1+($\frac{1}{2}$)n,n≥2时,变形为:2n+1an-2nan-1=1,利用等差数列的通项公式即可得出.
解答 解:∵2an=an-1+($\frac{1}{2}$)n,n≥2时,变形为:2n+1an-2nan-1=1,
∴数列{2n+1an}是等差数列,首项为2,公差为1.
∴2n+1an=2+(n-1)=n+1,
∴an=$\frac{n+1}{{2}^{n+1}}$.
∴a7=$\frac{8}{{2}^{8}}$=$\frac{1}{{2}^{5}}$=$\frac{1}{32}$.
点评 本题考查了递推关系、等差数列的通项公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 在区间(1,3)内f(x)是减函数 | B. | 当x=1时,f(x)取到极大值 | ||
| C. | 在(4,5)内f(x)是增函数 | D. | 当x=2时,f(x)取到极小值 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | B. | C. | D. |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com