精英家教网 > 高中数学 > 题目详情
4.三棱锥P-ABC中,PA⊥平面ABC,PA=3,AC=4,PB=PC=BC.
(1)求二面角P-BC-A的大小
(2)求二面角A-PC-B的大小.

分析 (1)取BC中点O,连结PO,AO,则∠POA是二面角P-BC-A的平面角,由此能求出二面角P-BC-A的大小.
(2)以O为原点,AO为x轴,OC为y轴,过O作平面ABC的垂线为z轴,建立空间直角坐标系,利用向量法能求出二面角A-PC-B的大小.

解答 解:(1)∵棱锥P-ABC中,PA⊥平面ABC,
∴PA⊥AC,PA⊥AB,
∵PA=3,AC=4,PB=PC=BC,
∴PB=PC=BC=$\sqrt{9+16}$=5,∴AB=4,
取BC中点O,连结PO,AO,
∵PB=PC=BC=5,AB=AC=4,
∴PO⊥BC,AO⊥BC,
∴∠POA是二面角P-BC-A的平面角,
∵PA=3,AO=$\sqrt{A{B}^{2}-(\frac{BC}{2})^{2}}$=$\sqrt{16-\frac{25}{4}}$=$\frac{\sqrt{39}}{2}$,PO=$\sqrt{P{B}^{2}-(\frac{BC}{2})^{2}}$=$\sqrt{25-\frac{25}{4}}$=$\frac{5\sqrt{3}}{2}$,
∴cos∠POA=$\frac{A{O}^{2}+P{O}^{2}-P{A}^{2}}{2AO•PO}$=$\frac{\frac{39}{4}+\frac{75}{4}-9}{2×\frac{\sqrt{39}}{2}×\frac{5\sqrt{3}}{2}}$=$\frac{\frac{39}{2}}{\frac{\sqrt{39}•5\sqrt{3}}{2}}$=$\frac{\sqrt{13}}{5}$.
$∠POA=arccos\frac{\sqrt{13}}{5}$.
∴二面角P-BC-A的大小为arccos$\frac{\sqrt{13}}{5}$.
(2)以O为原点,AO为x轴,OC为y轴,过O作平面ABC的垂线为z轴,建立空间直角坐标系,
A(-$\frac{\sqrt{39}}{2}$,0,0),P(-$\frac{\sqrt{39}}{2}$,0,3),C(0,$\frac{5}{2}$,0),B(0,-$\frac{5}{2}$,0),
$\overrightarrow{PA}$=(0,0,3),$\overrightarrow{PB}$=($\frac{\sqrt{39}}{2}$,-$\frac{5}{2}$,-3),$\overrightarrow{PC}$=($\frac{\sqrt{39}}{2}$,$\frac{5}{2}$,-3),
设平面PAC的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{PA}=3z=0}\\{\overrightarrow{n}•\overrightarrow{PC}=\frac{\sqrt{39}}{2}x+\frac{5}{2}y-3z=0}\end{array}\right.$,取x=$\sqrt{39}$,得$\overrightarrow{n}$=($\sqrt{39}$,-$\frac{39}{5}$,0),
设平面PBC的法向量$\overrightarrow{m}$=(a,b,c),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{PB}=\frac{\sqrt{39}}{2}a-\frac{5}{2}b-3c=0}\\{\overrightarrow{m}•\overrightarrow{PC}=\frac{\sqrt{39}}{2}a+\frac{5}{2}b-3c=0}\end{array}\right.$,取a=$\sqrt{39}$,得$\overrightarrow{m}$=($\sqrt{39}$,0,$\frac{13}{2}$),
设二面角A-PC-B的大小为θ,
则cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{39}{\sqrt{\frac{2496}{25}}•\sqrt{\frac{325}{4}}}$=$\frac{\sqrt{3}}{4}$,
$θ=arccos\frac{\sqrt{3}}{4}$,
∴二面角A-PC-B的大小为arccos$\frac{\sqrt{3}}{4}$.

点评 本题考查二面角的大小的求地法,是中档题,解题时要认真审题,注意余弦定理和向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知椭圆C1:$\frac{x^2}{4}$+y2=1,抛物线C2:y2=ax(a>0),点T为椭圆C1的右顶点,设椭圆C1与抛物线C2交于点A,B.
(1)求$\overrightarrow{TA}$•$\overrightarrow{TB}$的最小值,并求此时抛物线C2的方程;
(2)设点M是椭圆C1上异于A,B的任意一点,且直线MA,MB分别与x轴交于点P,Q,O为坐标原点,求证:|OP|•|OQ|为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若0<x-$\frac{1}{x}$<1,则x的取值范围{x|$\frac{1-\sqrt{5}}{2}$<x<0,或 x>$\frac{1+\sqrt{5}}{2}$ }.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}中,a1=$\frac{1}{2}$,2an=an-1+($\frac{1}{2}$)n,求通项公式和a7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在极坐标系中,过点(2$\sqrt{2}$,-$\frac{π}{4}}$)作圆ρ=4cosθ的切线,则切线的极坐标方程是ρsinθ=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=$\frac{1}{2a}$x2-lnx,其中a为大于0的常数
(1)当a=1时,求函数f(x)的单调区间和极值
(2)当x∈[1,2]时,不等式f(x)>2恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,AB为圆0的直径,C是圆上一点,∠ACB的平分线与圆O和AB的交点分别为D,E,点P为AB延长线上一点,且PC=PE.
(I)试判断直线PC与圆O的位置关系.并说明理由;
(Ⅱ)若AB=10,BC=6,试求BE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知三棱柱ABO-DCE的顶点A、B、C、D、E均在以顶点O为球心、半径为2的球面上,其中AB=2,则三棱柱的侧面积为(  )
A.2+2$\sqrt{3}$B.2+4$\sqrt{3}$C.4+4$\sqrt{3}$D.4+6$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若atanα>btanα>1,(a>0、a≠1,b>0,b≠1,$\frac{π}{2}$<α<π),则(  )
A.a>b>1B.b>a>1C.a<b<1D.b<a<1

查看答案和解析>>

同步练习册答案