分析 (1)将a=1代入函数f(x)的解析式,求出函数的导数,从而求出函数的单调区间;
(2)先求出函数的导数,问题转化为求函数f(x)在[1,2]上的最小值f(x)min>2,通过讨论a的范围,得到函数的单调区间,得到关于函数最小值的解析式,求出a的值即可.
解答 解:(1)当a=1时,$f(x)=\frac{x^2}{2}-lnx$,即$f'(x)=x-\frac{1}{x}=\frac{{{x^2}-1}}{x}$∵x>0,令f'(x)=0,得x=1.
当x变化时,f'(x),f(x)变化状态如下表:
| x | (0,1) | 1 | (1,+∞) |
| f'(x) | - | 0 | + |
| f(x) | ↘ | 极小值$\frac{1}{2}$ | ↗ |
点评 本题考查了函数的单调性、最值问题,考查导数的应用,分类讨论思想,是一道中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f'(x)>0,g′(x)>0 | B. | f′(x)<0,g′(x)<0 | C. | f′(x)<0,g′(x)>0 | D. | f′(x)>0,g′(x)<0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com