分析 (1)连结OC,如图,由PC=PE得∠PCE=∠PEC,由CE平分∠ACB得∠ACE=∠BCE,再根据三角形外角性质得∠PEC=∠EAC+∠ACE,∠PCE=∠PCB+∠BCE,则∠EAC=∠PCB,由AB为⊙O的直径得∠BAC+∠ABC=90°,加上∠ABC=∠OCB,则∠BAC+∠OCB=90°,所以∠PCB+∠OCB=90°,然后根据切线的判定定理得到直线PC与⊙O相切;
(2)求出AC,利用角平分线的性质,即可求出BE.
解答 解:(I)直线PC与⊙O相切.理由如下:
连结OC,
如图,
∵PC=PE,
∴∠PCE=∠PEC,
∵CE平分∠ACB,
∴∠ACE=∠BCE,
而∠PEC=∠EAC+∠ACE,∠PCE=∠PCB+∠BCE,
∴∠EAC=∠PCB,
∴AB为⊙O的直径,
∴∠ACB=90°,
∴∠BAC+∠ABC=90°,
而∠ABC=∠OCB,
∴∠BAC+∠OCB=90°,
∴∠PCB+∠OCB=90°,即∠PCO=90°,
∴PC⊥OC
∴直线PC与⊙O相切;
(2)∵AB为圆0的直径,C是圆上一点,AB=10,BC=6,
∴AC=8,
∵CE平分∠ACB,
∴$\frac{AC}{BC}=\frac{AE}{BE}$=$\frac{4}{3}$,
∴BE=$\frac{30}{7}$.
点评 本题考查了切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线.在判定一条直线为圆的切线时,当已知条件中未明确指出直线和圆是否有公共点时,常过圆心作该直线的垂线段,证明该线段的长等于半径;当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于这条直线.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com