分析 (1)对函数求导,结合f′(x)>0,f′(x)<0,f′(x)=0可求解
(2)由题意可得-a≤-x2+4ax-3a2≤a在[1-a,1+a]恒成立,结合二次函数的对称轴x=2a与区间[1-a,1+a]与的位置分类讨论进行求解.
解答 解:(1)f′(x)=-3x2+12ax-9a2,且0<a<1,
当f′(x)>0时,得a<x<3a;
当f′(x)<0时,得x<a或x>3a;
∴f(x)的单调递增区间为(a,3a);
f(x)的单调递减区间为(-∞,a)和(3a,+∞).
(2)f′(x)=-3x2+12ax-9a2=3[-(x-2a)2+a2],
令g(x)=-(x-2a)2+a2,
①当2a≤1-a时,即0<a≤$\frac{1}{3}$时,f′(x)在区间[1-a,1+a]内单调递减.
∴[g(x)]max=g(1-a)=-24a2+18a-3,[g(x)]min=f′(1+a)=6a-3.
∵|f′(x)|≤3a,
∴-a≤g(x)≤a,
∴$\left\{\begin{array}{l}{-{8a}^{2}+6a-1≤a}\\{2a-1≥-a}\end{array}\right.$,
∴a≥$\frac{1}{3}$,
此时,a=$\frac{1}{3}$.
②当2a>1-a,且2a<a+1时,即$\frac{1}{3}$<a<1,[g(x)]max=g(2a)=a2.
∵-a≤g(x)≤a,
∴$\left\{\begin{array}{l}{g(1+a)≥-a}\\{g(1-a)≥-a}\\{g(2a)≤a}\end{array}\right.$,
即 $\left\{\begin{array}{l}{2a-1≥-a}\\{-{8a}^{2}+6a-1≥-a}\\{{a}^{2}≤a}\end{array}\right.$,
∴$\frac{1}{3}$≤a≤$\frac{7+\sqrt{17}}{16}$.
此时,$\frac{1}{3}$<a≤$\frac{7+\sqrt{17}}{16}$,
③当2a≥1+a时,得a≥1与已知0<a<1矛盾,
综上所述,实数a的取值范围为[$\frac{1}{3}$,$\frac{7+\sqrt{17}}{16}$].
点评 本题综合考查了函数的导数的运用及二次函数在闭区间上的最值问题,(2)的求解的关键是要对二次函数的对称轴相对区间的位置分类讨论,体现了分类讨论的思想在解题中的应用.
科目:高中数学 来源: 题型:选择题
| A. | [$\frac{3}{2}$,+∞) | B. | (-∞,0) | C. | (0,$\frac{3}{2}$] | D. | (0,$\frac{3}{2}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
| x | -1 | 0 | 4 | 5 |
| f(x) | 1 | 2 | 2 | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com