8£®ÒÑÖªº¯Êýf£¨x£©=$\left\{{\begin{array}{l}{|{x+1}|£¬x¡Ü0}\\{|{{{log}_{\frac{1}{2}}}x}|£¬x£¾0}\end{array}}$Èô·½³Ìf£¨x£©=kÓÐËĸö²»Í¬µÄ½âx1£¬x2£¬x3£¬x4£¬ÇÒx1£¼x2£¼x3£¼x4£¬Ôò$\frac{{£¨{x_1}+{x_2}£©{x_3}}}{2}$+$\frac{1}{{x_3^2{x_4}}}$µÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®[$\frac{3}{2}$£¬+¡Þ£©B£®£¨-¡Þ£¬0£©C£®£¨0£¬$\frac{3}{2}$]D£®£¨0£¬$\frac{3}{2}$£©

·ÖÎö ×÷³öº¯Êýf£¨x£©£¬µÃµ½x1£¬x2¹ØÓÚx=-1¶Ô³Æ£¬x3x4=1£»»¯¼òÌõ¼þ£¬ÀûÓÃÊýÐνáºÏ½øÐÐÇó½â¼´¿É£®

½â´ð ½â£º×÷º¯Êýf£¨x£©µÄͼÏóÈçÓÒ£¬
¡ß·½³Ìf£¨x£©=kÓÐËĸö²»Í¬µÄ½âx1£¬x2£¬x3£¬x4£¬
ÇÒx1£¼x2£¼x3£¼x4£¬
¡àx1£¬x2¹ØÓÚx=-1¶Ô³Æ£¬¼´x1+x2=-2£¬
0£¼x3£¼1£¼x4£¼2£¬
Ôò|log${\;}_{\frac{1}{2}}$x3|=|log${\;}_{\frac{1}{2}}$x4|£¬
¼´log${\;}_{\frac{1}{2}}$x3=-log${\;}_{\frac{1}{2}}$x4£¬
Ôòlog${\;}_{\frac{1}{2}}$x3+log${\;}_{\frac{1}{2}}$x4=0
¼´log${\;}_{\frac{1}{2}}$x3x4=0
Ôòx3x4=1£»
µ±|log${\;}_{\frac{1}{2}}$x|=1µÃx=2»ò$\frac{1}{2}$£¬
Ôò1£¼x4¡Ü2£»$\frac{1}{2}$¡Üx3£¼1£»
¹Ê$\frac{{£¨{x_1}+{x_2}£©{x_3}}}{2}$+$\frac{1}{{x_3^2{x_4}}}$=-x3+$\frac{1}{{x}_{3}}$£¬$\frac{1}{2}$¡Üx3£¼1£»
Ôòº¯Êýy=-x3+$\frac{1}{{x}_{3}}$£¬ÔÚ$\frac{1}{2}$¡Üx3£¼1ÉÏΪ¼õº¯Êý£¬
Ôò¹Êx3=$\frac{1}{2}$È¡µÃ×î´óÖµ£¬Îªy=-$\frac{1}{2}$+2=$\frac{3}{2}$£¬
µ±x3=1ʱ£¬º¯ÊýÖµ×îСΪy=-1+1=0£®
¼´º¯Êýȡֵ·¶Î§ÊÇ£¨0£¬$\frac{3}{2}$]£®
¹ÊÑ¡£ºC

µãÆÀ ±¾Ì⿼²é·Ö¶Îº¯ÊýµÄÔËÓã¬Ö÷Òª¿¼²éº¯ÊýµÄµ¥µ÷ÐÔµÄÔËÓã¬ÔËÓÃÊýÐνáºÏµÄ˼Ïë·½·¨ÊǽâÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®Èçͼ£¬ÊÇij¼¸ºÎÌåµÄÈýÊÓͼºÍÖ±¹Ûͼ£¬ÆäÕýÊÓͼΪ¾ØÐΣ¬²àÊÓͼΪµÈÑüÖ±½ÇÈý½ÇÐΣ¬¸©ÊÓͼΪֱ½ÇÌÝÐΣ¬µãPÔÚÀâBCÉÏ£¬ÇÒAP¡ÎÆ½ÃæCDE£®
£¨¢ñ£©ÇóµãPµ½Æ½ÃæCDEµÄ¾àÀ룻
£¨¢ò£©Çó¶þÃæ½ÇA-CD-EµÄ´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖªÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-4t+a}\\{y=3t-1}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÒÔÔ­µãOΪ¼«µã£¬xÖáµÄ·Ç¸º°ëÖáΪ¼«ÖᣬÒÔÏàͬµÄ²Å³¤¶Èµ¥Î»½¨Á¢¼«×ø±êϵ£¬ÉèÔ²MµÄ¼«×ø±ê·½³ÌΪ£º¦Ñ2-6¦Ñsin¦È=-5£®
£¨1£©ÇóÔ²MµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÈôÖ±Ïßl½ØÔ²ËùµÃÏÒ³¤Îª2$\sqrt{3}$£¬ÇóÕûÊýaµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®º¯Êýf£¨x£©=2x2-lnxµÄµÝÔöÇø¼äÊÇ£¨¡¡¡¡£©
A£®£¨-¡Þ£¬-$\frac{1}{2}$£©¼°£¨0£¬$\frac{1}{2}$£©B£®£¨-$\frac{1}{2}$£¬0£©¼°£¨$\frac{1}{2}$£¬+¡Þ£©C£®£¨0£¬$\frac{1}{2}$£©D£®£¨$\frac{1}{2}$£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®º¯Êýf£¨x£©µÄ¶¨ÒåÓòΪR£¬f£¨1£©=3£¬¶ÔÈÎÒâx¡ÊR£¬f¡ä£¨x£©£¼2£¬Ôòf£¨x£©£¼2x+1µÄ½â¼¯Îª£¨¡¡¡¡£©
A£®£¨1£¬+¡Þ£©B£®£¨-1£¬1£©C£®£¨-¡Þ£¬1£©D£®£¨-¡Þ£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®¶¨ÒåÔÚRÉϵĺ¯Êýf£¨x£©µÄͼÏó¹ýµã£¨0£¬5£©£¬Æäµ¼º¯ÊýÊÇf¡ä£¨x£©£¬ÇÒÂú×ãf¡ä£¨x£©£¼1-f£¨x£©£¬Ôò²»µÈʽexf£¨x£©£¾ex+4£¨eΪ×ÔÈ»¶ÔÊýµÄµ×Êý£©µÄ½â¼¯Îª£¨-¡Þ£¬0£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖªABΪ¡ÑOµÄÒ»ÌõÖ±¾¶£¬µãPΪԲÉÏÒìÓÚABµÄÒ»µã£¬ÒÔµãPΪÇеã×÷ÇÐÏßl£¬Ê¹µÃAC¡Íl£¬BD¡Íl£¬´¹×ã·Ö±ðΪC£¬D£®
£¨1£©ÇóÖ¤£ºPC=PD£»
£¨2£©ÇóÖ¤£ºPBƽ·Ö¡ÏABD£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®º¯Êýf£¨x£©=x3-12xÔÚÇø¼ä[-4£¬4]ÉϵÄ×îСֵÊÇ£¨¡¡¡¡£©
A£®-9B£®-16C£®-12D£®-11

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®É躯Êýf£¨x£©=-x3+6ax2-9a2x+3£¬0£¼a£¼1£®
£¨1£©Çóº¯Êýf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨2£©¼Çº¯Êýf£¨x£©µÄµ¼º¯ÊýΪf¡ä£¨x£©£¬Èôx¡Ê[1-a£¬1+a]ʱ£¬ºãÓÐ|f¡ä£¨x£©|¡Ü3a³ÉÁ¢£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸