精英家教网 > 高中数学 > 题目详情
19.已知直线l的参数方程为$\left\{\begin{array}{l}{x=-4t+a}\\{y=3t-1}\end{array}\right.$(t为参数),在直角坐标系xOy中,以原点O为极点,x轴的非负半轴为极轴,以相同的才长度单位建立极坐标系,设圆M的极坐标方程为:ρ2-6ρsinθ=-5.
(1)求圆M的直角坐标方程;
(2)若直线l截圆所得弦长为2$\sqrt{3}$,求整数a的值.

分析 (1)由圆M的极坐标方程为:ρ2-6ρsinθ=-5,利用ρ2=x2+y2,x=ρcosθ,y=ρsinθ,可得直角坐标方程.通过配方可得圆心M,半径r.
(2)把直线l的参数方程为$\left\{\begin{array}{l}{x=-4t+a}\\{y=3t-1}\end{array}\right.$(t为参数)化为普通方程,利用点到直线的距离公式可得圆心M (0,3)到直线l的距离d,利用弦长公式即可得出.

解答 解:(1)∵圆M的极坐标方程为:ρ2-6ρsinθ=-5.
可得直角坐标方程:x2+y2-6y=-5,配方为:x2+(y-3)2=4.
∴圆 M 的直角坐标方程为::x2+(y-3)2=4.圆心M(0,3),半径r=2.
(2)把直线l的参数方程为$\left\{\begin{array}{l}{x=-4t+a}\\{y=3t-1}\end{array}\right.$(t为参数)化为普通方程得:3x+4y-3a+4=0,
∵直线l截 圆 M 所 得 弦 长 为2$\sqrt{3}$,
且圆M 的 圆 心 M (0,3)到直线l的距离d=$\frac{|12-3a+4|}{5}$=$\frac{|16-3a|}{5}$.
∴$(\sqrt{3})^{2}$=22-$(\frac{16-3a}{5})^{2}$,
化为:16-3a=±5,
解得a=$\frac{11}{3}$或7.
又a∈Z,∴a=7.

点评 本题考查了参数方程化为普通方程、极坐标方程化为直角坐标方程、直线与椭圆相交弦长公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.平面直角坐标系中,直线l的参数方程为$\left\{\begin{array}{l}x=t\\ y=a+t\end{array}$(t为参数,a为常数),曲线C的参数方程为$\left\{\begin{array}{l}x=2cosα\\ y=2+2sinα\end{array}$(α为参数,-$\frac{π}{2}$≤α≤$\frac{π}{2}$),以原点为极点,x轴的非负半轴为极轴建立极坐标系.
(1)写出直线l与曲线C的极坐标方程;
(2)若直线l与曲线C有且只有一个公共点,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在平面直角坐标系xOy和及坐标系中,极点与原点重合,极轴与x轴非负半轴重合,直线l的参数方程为$\left\{\begin{array}{l}x=1-t\\ y=2-\sqrt{3}t\end{array}\right.$(t为参数),曲线C:ρ2-4ρsinθ+2=0.
(Ⅰ)将直线l的方程化为普通方程,将曲线C的方程化为直角坐标方程;
(Ⅱ)若直线l与曲线交于A,B,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知曲线C1的参数方程为$\left\{\begin{array}{l}{x=2cosθ}\\{y=2sinθ}\\{\;}\end{array}\right.$(θ∈[-$\frac{π}{2}$,$\frac{π}{2}$]为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为2ρ(cosθ-sinθ)=3.
(Ⅰ)求C1与C2交点的直角坐标;
(Ⅱ)求C1上任意一点P到C2距离d的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\sqrt{3}$sinπx+cosπx,x∈R.
(1)若方程f(x)=2m-3有实数解,求m的取值范围;
(2)求函数f(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,AB为圆O的直径,P是AB延长线上一点,割线PCD交圆O于C,D两点,过点P作AP的垂线,交直线AC于点E,交直线AD于点F.
(1)证明:F、E、C、D四点共圆;
(2)若AP=10,BP=2,CP=3,求sin∠DPF的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在平面直角坐标系xOy中,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系.曲线C1的参数方程为$\left\{\begin{array}{l}{x=\frac{1}{2}cosα}\\{y=1+\frac{1}{2}sinα}\end{array}\right.$(α为参数),曲线C2的极坐标方程为ρ2(sin2θ+4cos2θ)=4.
(1)求曲线C1与曲线C2的普通方程;
(2)若A为曲线C1上任意一点,B为曲线C2上任意一点,求|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=$\left\{{\begin{array}{l}{|{x+1}|,x≤0}\\{|{{{log}_{\frac{1}{2}}}x}|,x>0}\end{array}}$若方程f(x)=k有四个不同的解x1,x2,x3,x4,且x1<x2<x3<x4,则$\frac{{({x_1}+{x_2}){x_3}}}{2}$+$\frac{1}{{x_3^2{x_4}}}$的取值范围是(  )
A.[$\frac{3}{2}$,+∞)B.(-∞,0)C.(0,$\frac{3}{2}$]D.(0,$\frac{3}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)的定义域为[-1,5],部分对应值如下表:
x-1045
f(x)1221
f(x)的导函数y=f′(x)的图象如图所示,下列关于函数f(x)的命题:
①函数f(x)的值域为[1,2];
②函数f(x)在[0,2]上是减函数;
③如果当x∈[-1,t]时,f(x)的最大值是2,那么t的最大值为5;
④当1<a<2时,函数y=f(x)-a有4个零点.
其中真命题为②③(填写序号).

查看答案和解析>>

同步练习册答案