精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=$\sqrt{3}$sinπx+cosπx,x∈R.
(1)若方程f(x)=2m-3有实数解,求m的取值范围;
(2)求函数f(x)的单调增区间.

分析 (1)由两角和的正弦公式化简解析式,由正弦函数的值域求出f(x)的值域,由条件列出不等式,求出m的取值范围;
(2)根据正弦函数的增区间和整体思想求出函数f(x)的单调增区间.

解答 解:(1)由题意得,
f(x)=$\sqrt{3}$sinπx+cosπx=$2sin(πx+\frac{π}{6})$,
∴f(x)的值域是[-2,2],
∵方程f(x)=2m-3有实数解,
∴-2≤2m-3≤2,解得;$\frac{1}{2}≤m≤\frac{5}{2}$,
∴m的取值范围是[$\frac{1}{2}$,$\frac{5}{2}$];
(2)由$-\frac{π}{2}+2kπ≤πx+\frac{π}{6}≤\frac{π}{2}+2kπ(k∈Z)$得,
$-\frac{2}{3}+2k≤x≤\frac{1}{3}+2k(k∈Z)$,
∴f(x)单调递增区间是$[-\frac{2}{3}+2k,\frac{1}{3}+2k](k∈Z)$.

点评 本题考查了两角和的正弦公式,以及正弦函数的图象与性质,考查整体思想,化简、变形能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.求下列函数的值域:
(1)y=$\frac{3x+1}{x-2}$;
(2)y=$\frac{5}{2{x}^{2}-4x+3}$;
(3)y=x+4$\sqrt{1-x}$;
(4)y=$\frac{{x}^{2}}{x-1}$(x>1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在四棱锥P-ABCD中,底面ABCD为矩形,侧棱PD⊥底面ABCD,且PD=CD=$\frac{\sqrt{2}}{2}$BC,过棱PC的中点E,作EF⊥PB交PB于点F,连接DE,DF,BD,BE.
(1)证明:PB⊥平面DEF;
(2)求异面直线AD与BE所成角的余弦值;
(3)二面角B-DE-F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在四棱锥P-ABCD中,底面ABCD是正方形.侧棱PA⊥底面ABCD.M、N分别为PD、AC的中点.
(1)证明:平面PAC⊥平面MND:
2)若直线MN与平面ABCD所成角的余弦值为$\frac{2\sqrt{5}}{5}$.求二面角A-MN-D的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\sqrt{3}$sinωxcosωx-cos2ωx+$\frac{3}{2}$(ω∈R)的最小正周期为π,且图象关于直线x=$\frac{π}{6}$对称.
(1)求f(x)的解析式;
(2)若函数g(x)=f(-x))+a(0$≤x≤\frac{π}{2}$)有且只有一个零点,求实数a的取值范围;
(3)若x1,x2是(2)中函数g(x)的两个不同零点,求证:x1+x2=$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知直线l的参数方程为$\left\{\begin{array}{l}{x=-4t+a}\\{y=3t-1}\end{array}\right.$(t为参数),在直角坐标系xOy中,以原点O为极点,x轴的非负半轴为极轴,以相同的才长度单位建立极坐标系,设圆M的极坐标方程为:ρ2-6ρsinθ=-5.
(1)求圆M的直角坐标方程;
(2)若直线l截圆所得弦长为2$\sqrt{3}$,求整数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若点P(2,4)在直线l:$\left\{\begin{array}{l}{x=1+t}\\{y=3-at}\end{array}\right.$(t为参数)上,则a的值为(  )
A.3B.2C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)的定义域为R,f(1)=3,对任意x∈R,f′(x)<2,则f(x)<2x+1的解集为(  )
A.(1,+∞)B.(-1,1)C.(-∞,1)D.(-∞,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=$\left\{\begin{array}{l}{|lgx|,x>0}\\{1-{x}^{2},x≤0}\end{array}\right.$,则方程f(x2-2x)=a(a≥0)的不同实数根的个数不可能为(  )
A.3B.4C.5D.6.

查看答案和解析>>

同步练习册答案