精英家教网 > 高中数学 > 题目详情
3.函数f(x)的定义域为R,f(1)=3,对任意x∈R,f′(x)<2,则f(x)<2x+1的解集为(  )
A.(1,+∞)B.(-1,1)C.(-∞,1)D.(-∞,+∞)

分析 构造g(x)=f(x)-2x-1,则原不等式就化为g(x)<0=g(1),再利用导数研究g(x)的单调性,即可得出答案.

解答 解:令g(x)=f(x)-2x-1,则g(1)=f(1)-2-1,
因为f(1)=3,所以g(1)=3-2-1=0
由f(x)<2x+1,即f(x)-2x-1<0,即g(x)<g(1);
因为f'(x)<2,所以g'(x)=f'(x)-2<0
所以,g(x)是R上的减函数;
则由g(x)<g(1)⇒x>1;
所以,不等式f(x)<2x+1的解集为{x|x>1}.
故选A.

点评 本题考查学生灵活运用函数思想求解不等式,解题的关键是构建函数,确定函数的单调性,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.如图,四棱锥P-ABCD中,PB⊥底面ABCD,底面ABCD为直角梯形,∠ABC=90°,AD∥BC,∠BCD=45°,AB=AD=PB=1,点E在棱PA上,且PE=2EA.
(1)求证:平面PCD⊥平面PBD;
(2)求二面角A-BE-D的正弦值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\sqrt{3}$sinπx+cosπx,x∈R.
(1)若方程f(x)=2m-3有实数解,求m的取值范围;
(2)求函数f(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在平面直角坐标系xOy中,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系.曲线C1的参数方程为$\left\{\begin{array}{l}{x=\frac{1}{2}cosα}\\{y=1+\frac{1}{2}sinα}\end{array}\right.$(α为参数),曲线C2的极坐标方程为ρ2(sin2θ+4cos2θ)=4.
(1)求曲线C1与曲线C2的普通方程;
(2)若A为曲线C1上任意一点,B为曲线C2上任意一点,求|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若函数y=-$\frac{4}{3}$x3+(b-1)x有三个单调区间,则b的取值范围是b>1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=$\left\{{\begin{array}{l}{|{x+1}|,x≤0}\\{|{{{log}_{\frac{1}{2}}}x}|,x>0}\end{array}}$若方程f(x)=k有四个不同的解x1,x2,x3,x4,且x1<x2<x3<x4,则$\frac{{({x_1}+{x_2}){x_3}}}{2}$+$\frac{1}{{x_3^2{x_4}}}$的取值范围是(  )
A.[$\frac{3}{2}$,+∞)B.(-∞,0)C.(0,$\frac{3}{2}$]D.(0,$\frac{3}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=x-sinx,则(  )
A.是增函数
B.是减函数
C.在(-∞,0)上单调递增,在(0,+∞)上单调递减
D.在(-∞,0)上单调递减,在(0,+∞)上单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若函数f(x)=alnx+$\frac{1}{2}$ax2-2x在x∈(1,2)内存在单调递减区间,则实数a的取值范围是(  )
A.(-∞,1)B.(-∞,$\frac{4}{5}$)C.(0,1)D.(0,$\frac{4}{5}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知m>0,函数f(x)=$\frac{1}{2}{x^2}$-mlnx,g(x)=x2-(m+1)x+1.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)命题p:f(x)在区间[3,+∞)上为增函数;命题q:关于x的方程g(x)=0有实根.若(?p)∧q是真命题,求m的取值范围.

查看答案和解析>>

同步练习册答案