精英家教网 > 高中数学 > 题目详情
2.在四棱锥P-ABCD中,底面ABCD是正方形.侧棱PA⊥底面ABCD.M、N分别为PD、AC的中点.
(1)证明:平面PAC⊥平面MND:
2)若直线MN与平面ABCD所成角的余弦值为$\frac{2\sqrt{5}}{5}$.求二面角A-MN-D的正弦值.

分析 (1)如图所示,利用正方形的性质可得:DA⊥AC.利用侧棱PA⊥底面ABCD,可得PA⊥DN.再利用线面垂直与面面垂直的判定与性质定理可得平面PAC⊥平面MND.
(2)建立如图所示的空间直角坐标系.不妨设AB=2,PA=2t.取AD的中点E,连接EM,EN.利用三角形中位线定理及其线面垂直的性质定理可得EM⊥底面ABCD.
因此∠MNE是直线MN与平面ABCD所成的角,在Rt△EMN中,$\frac{EN}{MN}$=$\frac{1}{\sqrt{1+{t}^{2}}}$=$\frac{2\sqrt{5}}{5}$,解得t=$\frac{1}{2}$.再利用法向量的夹角公式即可得出.

解答 证明:(1)如图所示,由底面ABCD是正方形,N为对角线AC的中点,∴DA⊥AC
∵侧棱PA⊥底面ABCD,DN?底面ABCD,
∴PA⊥DN.
∴DN⊥平面PAC,
∵DN?平面MND,
∴平面PAC⊥平面MND.
解:(2)建立如图所示的空间直角坐标系.不妨设AB=2,PA=2t.
取AD的中点E,连接EM,EN.
则EM∥PA,∵侧棱PA⊥底面ABCD,∴EM⊥底面ABCD.
∴∠MNE是直线MN与平面ABCD所成的角,ME⊥EN.
在Rt△EMN中,EN=1,EM=t,MN=$\sqrt{1+{t}^{2}}$.
∴$\frac{EN}{MN}$=$\frac{1}{\sqrt{1+{t}^{2}}}$=$\frac{2\sqrt{5}}{5}$,解得t=$\frac{1}{2}$.
∴A(0,0,0),D(0,2,0),P(0,0,1),M(0,1,$\frac{1}{2}$),N(1,1,0).
$\overrightarrow{NM}$=$(-1,0,\frac{1}{2})$,$\overrightarrow{AN}$=(1,1,0),$\overrightarrow{DN}$=(1,-1,0).
设平面AMN的法向量为$\overrightarrow{m}$=(x,y,z),则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{AN}=0}\\{\overrightarrow{m}•\overrightarrow{NM}=0}\end{array}\right.$,
∴$\left\{\begin{array}{l}{x+y=0}\\{-x+\frac{1}{2}z=0}\end{array}\right.$,
取x=1,则y=-1,z=2,
∴$\overrightarrow{m}$=(1,-1,2).
同理可得平面MND的法向量$\overrightarrow{n}$=(1,1,2).
∴$cos<\overrightarrow{m},\overrightarrow{n}>$=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$=$\frac{4}{\sqrt{6}×\sqrt{6}}$=$\frac{2}{3}$.,
∴$sin<\overrightarrow{m},\overrightarrow{n}>$=$\sqrt{1-(\frac{2}{3})^{2}}$=$\frac{\sqrt{5}}{3}$.

点评 本题考查了空间平行与垂直的位置关系、利用法向量的夹角求二面角的平面角、正方形的性质、三角形中位线定理、直角三角形的边角关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=aex-x-1,a∈R.
(1)求函数f(x)的单调区间;
(2)若曲线f(x)恒在直线y=x+1的上方,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,四棱锥P-ABCD中,PB⊥底面ABCD,底面ABCD为直角梯形,∠ABC=90°,AD∥BC,∠BCD=45°,AB=AD=PB=1,点E在棱PA上,且PE=2EA.
(1)求证:平面PCD⊥平面PBD;
(2)求二面角A-BE-D的正弦值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在平面直角坐标系xOy和及坐标系中,极点与原点重合,极轴与x轴非负半轴重合,直线l的参数方程为$\left\{\begin{array}{l}x=1-t\\ y=2-\sqrt{3}t\end{array}\right.$(t为参数),曲线C:ρ2-4ρsinθ+2=0.
(Ⅰ)将直线l的方程化为普通方程,将曲线C的方程化为直角坐标方程;
(Ⅱ)若直线l与曲线交于A,B,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数$f(x)=\frac{{\sqrt{|x|}}}{e^x}$(x∈R),若关于x的方程f(x)-m+1=0恰好有3个不相等的实数根,则实数m的取值范围为(  )
A.$(1,\frac{{\sqrt{2e}}}{2e}+1)$B.$(0,\frac{{\sqrt{2e}}}{2e})$C.$(1,\frac{1}{e}+1)$D.$(\frac{{\sqrt{2e}}}{2e},1)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知曲线C1的参数方程为$\left\{\begin{array}{l}{x=2cosθ}\\{y=2sinθ}\\{\;}\end{array}\right.$(θ∈[-$\frac{π}{2}$,$\frac{π}{2}$]为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为2ρ(cosθ-sinθ)=3.
(Ⅰ)求C1与C2交点的直角坐标;
(Ⅱ)求C1上任意一点P到C2距离d的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\sqrt{3}$sinπx+cosπx,x∈R.
(1)若方程f(x)=2m-3有实数解,求m的取值范围;
(2)求函数f(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在平面直角坐标系xOy中,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系.曲线C1的参数方程为$\left\{\begin{array}{l}{x=\frac{1}{2}cosα}\\{y=1+\frac{1}{2}sinα}\end{array}\right.$(α为参数),曲线C2的极坐标方程为ρ2(sin2θ+4cos2θ)=4.
(1)求曲线C1与曲线C2的普通方程;
(2)若A为曲线C1上任意一点,B为曲线C2上任意一点,求|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若函数f(x)=alnx+$\frac{1}{2}$ax2-2x在x∈(1,2)内存在单调递减区间,则实数a的取值范围是(  )
A.(-∞,1)B.(-∞,$\frac{4}{5}$)C.(0,1)D.(0,$\frac{4}{5}$)

查看答案和解析>>

同步练习册答案