7£®Æ½ÃæÖ±½Ç×ø±êϵÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=t\\ y=a+t\end{array}$£¨tΪ²ÎÊý£¬aΪ³£Êý£©£¬ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=2cos¦Á\\ y=2+2sin¦Á\end{array}$£¨¦ÁΪ²ÎÊý£¬-$\frac{¦Ð}{2}$¡Ü¦Á¡Ü$\frac{¦Ð}{2}$£©£¬ÒÔÔ­µãΪ¼«µã£¬xÖáµÄ·Ç¸º°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£®
£¨1£©Ð´³öÖ±ÏßlÓëÇúÏßCµÄ¼«×ø±ê·½³Ì£»
£¨2£©ÈôÖ±ÏßlÓëÇúÏßCÓÐÇÒÖ»ÓÐÒ»¸ö¹«¹²µã£¬ÇóʵÊýaµÄÖµ£®

·ÖÎö £¨1£©ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=2cos¦Á\\ y=2+2sin¦Á\end{array}$£¨¦ÁΪ²ÎÊý£¬-$\frac{¦Ð}{2}$¡Ü¦Á¡Ü$\frac{¦Ð}{2}$£©£¬ÀûÓÃcos2¦Á+sin2¦Á=1»¯ÎªÖ±½Ç×ø±ê·½³Ì£¬ÔÙÀûÓæÑ2=x2+y2£¬y=¦Ñsin¦È=0£¬¿ÉµÃ¼«×ø±ê·½³Ì£¨$0¡Ü¦È¡Ü\frac{¦Ð}{2}$£©£®Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=t\\ y=a+t\end{array}$£¨tΪ²ÎÊý£¬aΪ³£Êý£©£¬ÏûÈ¥²ÎÊýt¿ÉµÃÖ±½Ç×ø±ê·½³Ì£¬ÀûÓü«×ø±êÓëÖ±½Ç×ø±ê»¥»¯¹«Ê½¼´¿É»¯Îª¼«×ø±ê·½³Ì£®
£¨2£©½«¦Ñ=4sin¦È£¨$0¡Ü¦È¡Ü\frac{¦Ð}{2}$£©´úÈë¦Ñcos¦È-¦Ñsin¦È+a=0¿ÉµÃ£º$2\sqrt{2}sin£¨{2¦È+\frac{¦Ð}{4}}£©=2-a$£¬Áî$2¦È+\frac{¦Ð}{4}=t$£¬Èçͼ×÷³ö$y=2\sqrt{2}sint$£¨$\frac{¦Ð}{4}¡Üt¡Ü\frac{5¦Ð}{4}$£©ºÍy=2-aµÄͼÏ󣬼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=2cos¦Á\\ y=2+2sin¦Á\end{array}$£¨¦ÁΪ²ÎÊý£¬-$\frac{¦Ð}{2}$¡Ü¦Á¡Ü$\frac{¦Ð}{2}$£©£¬
»¯ÎªÖ±½Ç×ø±ê·½³Ì£ºx2+£¨y-2£©2=4£¬
Õ¹¿ª¿ÉµÃ£ºx2+y2-4y=0£¬»¯Îª¼«×ø±ê·½³Ì£º¦Ñ2-4¦Ñsin¦È=0£¬¼´¦Ñ=4sin¦È£¨$0¡Ü¦È¡Ü\frac{¦Ð}{2}$£©£¬
Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=t\\ y=a+t\end{array}$£¨tΪ²ÎÊý£¬aΪ³£Êý£©£¬
ÏûÈ¥²ÎÊýt¿ÉµÃ£ºy=a+x£¬»¯Îª¼«×ø±ê·½³Ì£º¦Ñcos¦È-¦Ñsin¦È+a=0£®
£¨2£©½«¦Ñ=4sin¦È£¨$0¡Ü¦È¡Ü\frac{¦Ð}{2}$£©´úÈë¦Ñcos¦È-¦Ñsin¦È+a=0µÃ£º4sin¦Ècos¦È-4sin¦Èsin¦È+a=0£¬¼´$2\sqrt{2}sin£¨{2¦È+\frac{¦Ð}{4}}£©=2-a$£¬
Áî$2¦È+\frac{¦Ð}{4}=t$£¬¡ß$0¡Ü¦È¡Ü\frac{¦Ð}{2}$£¬Ôò$\frac{¦Ð}{4}¡Üt¡Ü\frac{5¦Ð}{4}$£®Èçͼ×÷³ö$y=2\sqrt{2}sint$£¨$\frac{¦Ð}{4}¡Üt¡Ü\frac{5¦Ð}{4}$£©ºÍy=2-aµÄͼÏó£¬
ÓÉÖ±ÏßlÓëÇúÏßCÓÐÇÒÖ»ÓÐÒ»¸ö¹«¹²µã£¬µÃ$2-a=2\sqrt{2}$»ò-2¡Ü2-a£¼2£¬
¼´$a=2-2\sqrt{2}$»ò0£¼a¡Ü4£®

µãÆÀ ±¾Ì⿼²éÁ˼«×ø±ê»¯ÎªÖ±½Ç×ø±ê¡¢²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¡¢ºÍ²î¹«Ê½¡¢ÊýÐνáºÏ·½·¨£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÈçͼËùʾ£¬ÔÚ³¤·½ÌåABCD-A¡äB¡äC¡äD¡äÖУ¬AB=¦ËAD=¦ËAA¡ä£¨¦Ë£¾0£©£¬E£¬F·Ö±ðÊÇA¡äC¡äºÍADµÄÖе㣬ÇÒEF¡ÍÆ½ÃæA¡äBCD¡ä£®
£¨1£©Çó¦ËµÄÖµ£»
£¨2£©Çó¶þÃæ½ÇC-A¡äB-EµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÒÑÖª¶¨ÒåÔÚRÉϵÄżº¯Êýg£¨x£©Âú×ãg£¨x£©+g£¨2-x£©=0£¬º¯Êýf£¨x£©=$\sqrt{1-{x^2}}$µÄͼÏóÊÇg£¨x£©µÄͼÏóµÄÒ»²¿·Ö£®Èô¹ØÓÚxµÄ·½³Ìg2£¨x£©=a£¨x+1£©2ÓÐ3¸ö²»Í¬µÄʵÊý¸ù£¬ÔòʵÊýaµÄȡֵ·¶Î§Îª£¨¡¡¡¡£©
A£®£¨$\frac{1}{8}$£¬+¡Þ£©B£®£¨$\frac{1}{3}$£¬$\frac{{2\sqrt{2}}}{3}$£©C£®£¨$\frac{{\sqrt{2}}}{4}$£¬+¡Þ£©D£®£¨2$\sqrt{2}$£¬3£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬Ô²CµÄ·½³ÌΪ£¨x-2£©2+£¨y-3£©2=9£¬Èô¹ýµãM£¨0£¬3£©µÄÖ±ÏßÓëÔ²C½»ÓÚP£¬QÁ½µã£¨ÆäÖеãPÔÚµÚ¶þÏóÏÞ£©£¬ÇÒ¡ÏPMO=2¡ÏPQO£¬ÔòµãQµÄºá×ø±êΪ1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÇóÏÂÁк¯ÊýµÄÖµÓò£º
£¨1£©y=$\frac{3x+1}{x-2}$£»
£¨2£©y=$\frac{5}{2{x}^{2}-4x+3}$£»
£¨3£©y=x+4$\sqrt{1-x}$£»
£¨4£©y=$\frac{{x}^{2}}{x-1}$£¨x£¾1£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®Éèa£¾1£¬a2x£¾a3£¬ÔòxµÄȡֵ·¶Î§ÊÇx£¾$\frac{3}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªº¯Êýf£¨x£©=x2+ln£¨x-a£©£¬a¡ÊR£®
£¨¢ñ£©Èôf£¨x£©ÓÐÁ½¸ö²»Í¬µÄ¼«Öµµã£¬ÇóaµÄȡֵ·¶Î§£»
£¨¢ò£©µ±a¡Ü-2ʱ£¬Áîg£¨a£©±íʾf£¨x£©ÔÚ[-1£¬0]ÉϵÄ×î´óÖµ£¬Çóg£¨a£©µÄ±í´ïʽ£»
£¨¢ó£©ÇóÖ¤£º$\frac{3{n}^{2}+5n}{8{n}^{2}+24n+16}$+ln$\sqrt{n+1}$$£¼1+\frac{1}{2}+\frac{1}{3}$+¡­+$\frac{1}{n}$£¬n¡ÊN*£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®Èçͼ£¬ÊÇij¼¸ºÎÌåµÄÈýÊÓͼºÍÖ±¹Ûͼ£¬ÆäÕýÊÓͼΪ¾ØÐΣ¬²àÊÓͼΪµÈÑüÖ±½ÇÈý½ÇÐΣ¬¸©ÊÓͼΪֱ½ÇÌÝÐΣ¬µãPÔÚÀâBCÉÏ£¬ÇÒAP¡ÎÆ½ÃæCDE£®
£¨¢ñ£©ÇóµãPµ½Æ½ÃæCDEµÄ¾àÀ룻
£¨¢ò£©Çó¶þÃæ½ÇA-CD-EµÄ´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖªÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-4t+a}\\{y=3t-1}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÒÔÔ­µãOΪ¼«µã£¬xÖáµÄ·Ç¸º°ëÖáΪ¼«ÖᣬÒÔÏàͬµÄ²Å³¤¶Èµ¥Î»½¨Á¢¼«×ø±êϵ£¬ÉèÔ²MµÄ¼«×ø±ê·½³ÌΪ£º¦Ñ2-6¦Ñsin¦È=-5£®
£¨1£©ÇóÔ²MµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÈôÖ±Ïßl½ØÔ²ËùµÃÏÒ³¤Îª2$\sqrt{3}$£¬ÇóÕûÊýaµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸