精英家教网 > 高中数学 > 题目详情
15.在平面直角坐标系xOy中,圆C的方程为(x-2)2+(y-3)2=9,若过点M(0,3)的直线与圆C交于P,Q两点(其中点P在第二象限),且∠PMO=2∠PQO,则点Q的横坐标为1.

分析 根据题意画出图形,结合图形得出点Q在以点M为圆心,3为半径的圆上,写出圆的方程,与圆C的方程联立,消去y求得x的值即可.

解答 解:如图所示,
因为∠PMO=2∠PQO,
所以MO=MQ=3,
则以点M(0,3)为圆心,r=3为半径的圆的方程为
x2+(y-3)2=9,
它与圆C的方程(x-2)2+(y-3)2=9联立,
消去y得:-4x+4=0,
解得x=1,
所以点Q的横坐标为1.
故答案为:1

点评 本题考查了直线与圆的方程的应用问题,也考查了转化法与数形结合思想的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.如图,在三菱柱ABC-A1B1C1中,平面A1C1CA和平面B1C1CB均为正方形,B1C1⊥A1C1,M为CC1的中点,B1C1=2,点D在线段AC上运动(不含端点A、C).
(Ⅰ)若点P在棱A1B1上,试确定点P的位置,使得,MP⊥AC1,并求出此时点P的坐标;
(Ⅱ)探究:是否存在点D,使得二面角C1-BD-C的大小为60°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在平面直角坐标系xOy中,已知直线l的参数方程为$\left\{\begin{array}{l}{x=\frac{3}{2}+t}\\{y=\sqrt{3}t}\end{array}\right.$(t为参数),曲线C的参数方程为$\left\{\begin{array}{l}{x=\frac{2}{3}{m}^{2}}\\{y=2m}\end{array}\right.$(m为参数),若直线l与曲线C相交于A、B两点,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知曲线f(x)=$\frac{ax}{{e}^{x}}$在x=0处的切线方程为y=x+b.
(1)求a,b的值;
(2)若对任意x∈($\frac{1}{2}$,$\frac{3}{2}$),f(x)<$\frac{1}{m+6x-3{x}^{2}}$恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=aex-x-1,a∈R.
(1)求函数f(x)的单调区间;
(2)若曲线f(x)恒在直线y=x+1的上方,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=$\frac{1}{3}$x3-x2-8x+4.
(1)求f(x)的单调区间;
(2)当x∈[-1,5]时,求f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.平面直角坐标系中,直线l的参数方程为$\left\{\begin{array}{l}x=t\\ y=a+t\end{array}$(t为参数,a为常数),曲线C的参数方程为$\left\{\begin{array}{l}x=2cosα\\ y=2+2sinα\end{array}$(α为参数,-$\frac{π}{2}$≤α≤$\frac{π}{2}$),以原点为极点,x轴的非负半轴为极轴建立极坐标系.
(1)写出直线l与曲线C的极坐标方程;
(2)若直线l与曲线C有且只有一个公共点,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在三棱锥P-ABC中,平面PAC⊥平面ABC,且△PAC是等边三角形,AC=2,AB⊥BC,且AB=BC.过点B的平面α与直线PC平行,且与平面PAC垂直,设α与AC交于点O,与PA交于点D.
(Ⅰ)在图中标出O、D的位置,并说明理由;
(Ⅱ)若直线PB与平面ABC所成的角等于$\frac{π}{3}$,求平面BDO与平面PBC所成二面角的平面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知曲线C1的参数方程为$\left\{\begin{array}{l}{x=2cosθ}\\{y=2sinθ}\\{\;}\end{array}\right.$(θ∈[-$\frac{π}{2}$,$\frac{π}{2}$]为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为2ρ(cosθ-sinθ)=3.
(Ⅰ)求C1与C2交点的直角坐标;
(Ⅱ)求C1上任意一点P到C2距离d的最大值.

查看答案和解析>>

同步练习册答案